The web application does not sufficiently verify inputs that are assumed to be immutable but are actually externally controllable, such as hidden form fields.
Extended Description
If a web product does not properly protect assumed-immutable values from modification in hidden form fields, parameters, cookies, or URLs, this can lead to modification of critical data. Web applications often mistakenly make the assumption that data passed to the client in hidden fields or cookies is not susceptible to tampering. Improper validation of data that are user-controllable can lead to the application processing incorrect, and often malicious, input.
For example, custom cookies commonly store session data or persistent data across sessions. This kind of session data is normally involved in security related decisions on the server side, such as user authentication and access control. Thus, the cookies might contain sensitive data such as user credentials and privileges. This is a dangerous practice, as it can often lead to improper reliance on the value of the client-provided cookie by the server side application.
Alternate Terms
Assumed-Immutable Parameter Tampering
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Software Development" (CWE-699)
Nature
Type
ID
Name
MemberOf
类别- a CWE entry that contains a set of other entries that share a common characteristic.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
与“建筑概念”(CWE-1008)有关
Nature
Type
ID
Name
MemberOf
类别- a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
阶段
Note
Implementation
OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific(Undetermined Prevalence)
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
In this example, a web application uses the value of a hidden form field (accountID) without having done any input validation because it was assumed to be immutable.
(bad code)
Example Language:Java
字符串accountId = request.getParameter(“ accountId”); User user = getUserFromID(Long.parseLong(accountID));
Example 2
Hidden fields should not be trusted as secure parameters.
An attacker can intercept and alter hidden fields in a post to the server as easily as user input fields. An attacker can simply parse the HTML for the substring:
(bad code)
Example Language:HTML
<输入类型=“隐藏”
or even just "hidden". Hidden field values displayed later in the session, such as on the following page, can open a site up to cross-site scripting attacks.
Modification of message number parameter allows attackers to read other people's messages.
Potential Mitigations
阶段: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
阶段: Implementation
Strategy: Input Validation
在经过验证之前CWE-180)。Make sure that the application does not decode the same input twice (CWE-174)。此类错误可以用来绕过允许列表验证方案,通过检查危险输入后进行检查。
会员资格
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
类别- a CWE entry that contains a set of other entries that share a common characteristic.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields." Page 75. McGraw-Hill. 2010.
[Ref-62] Mark Dowd,John McDonald和Justin Schuh。“软件安全评估的艺术”。第17章,“ HTML和URL中的嵌入状态”,第1032页。第一版。艾迪生·卫斯理。2006。