CWE-472:假定的可免除Web参数的外部控制
View customized information:
The web application does not sufficiently verify inputs that are assumed to be immutable but are actually externally controllable, such as hidden form fields.
If a web product does not properly protect assumed-immutable values from modification in hidden form fields, parameters, cookies, or URLs, this can lead to modification of critical data. Web applications often mistakenly make the assumption that data passed to the client in hidden fields or cookies is not susceptible to tampering. Improper validation of data that are user-controllable can lead to the application processing incorrect, and often malicious, input. For example, custom cookies commonly store session data or persistent data across sessions. This kind of session data is normally involved in security related decisions on the server side, such as user authentication and access control. Thus, the cookies might contain sensitive data such as user credentials and privileges. This is a dangerous practice, as it can often lead to improper reliance on the value of the client-provided cookie by the server side application.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
与“建筑概念”(CWE-1008)有关
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages Class: Not Language-Specific(Undetermined Prevalence)
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Example 1 In this example, a web application uses the value of a hidden form field (accountID) without having done any input validation because it was assumed to be immutable.
(bad code)
Example Language:Java
字符串accountId = request.getParameter(“ accountId”);
User user = getUserFromID(Long.parseLong(accountID)); Example 2 Hidden fields should not be trusted as secure parameters. An attacker can intercept and alter hidden fields in a post to the server as easily as user input fields. An attacker can simply parse the HTML for the substring:
(bad code)
Example Language:HTML
<输入类型=“隐藏”
or even just "hidden". Hidden field values displayed later in the session, such as on the following page, can open a site up to cross-site scripting attacks.
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Relationship
This is a primary weakness for many other weaknesses and functional consequences, including XSS, SQL injection, path disclosure, and file inclusion.
Theoretical
This is a technology-specific MAID problem.
More information is available — Please select a different filter.
|
Use of the Common Weakness Enumeration (CWE) and the associated references from this website are subject to theTerms of Use. CWE is sponsored by theU.S. Department of Homeland Security(DHS)Cybersecurity and Infrastructure Security Agency(CISA) and managed by theHomeland Security Systems Engineering and Development Institute(HSSEDI)由manbetx客户端首页(MITRE). Copyright © 2006–2023, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |