< w Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Tvpes

CWE Version 1.8.1

Edited by:
Steven M. Christey, Conor O. Harris,
Janis E. Kenderdine, and Brendan Miles

Project Lead:
Robert A. Martin

CWE Version 1.8.1
2010-04-05

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2010, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 1.8.1
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... xvii
Individual CWE Definitions

L@V I o Tox 11T o TP UUUPRRN 1
(O3 V] A 1 01V T o] 0 1= o | PR RPN 1
CWE-3: Technology-Specific ENVIFONMENT ISSUES.coiiiiiiiiiie ettt e ettt e e e e et ae e e e e e aneee e e e e s atbeeeaaeanes 1
CWE-4: J2EE ENVIronmMeENt ISSUES.........coieiiiiiiiiiieiiiiiiea e esiiee e eee e 2
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption 2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length............ccooiiiiiiiiiiii e 3
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page.........ccooi it siieee e 4
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE...........ccuuiiiiiiiiiiiiiie i 5
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods.............oooceiiiiiiiiiieiiiiiiieeeee 6
CWE-10: ASP.NET ENVIFONMENT ISSUES. ... iiietiieie ettt e e ettt e e ettt e e e e e ekt e e e e e ataee e e e e e aaneseeaeeeannbeeeaaeaannnneeaens 7
CWE-11:

CWE-12:

CWE-13:

CWE-14:

CWE-15:

CWE-16:

CWE-17:

CWE-18:

CWE-19: Data Handling

CWE-20: Improper INPUt VAIAALION.ooiiiiiiii ettt e e e e e e e e e e e e e antbee e e e e anneeeeaens 15
CWE-21: Pathname Traversal and EQUIVAIENCE EITOIS.ccuuiiiiiiiiiiee ettt e e e e et a e e eneeeeas 23
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')..........cccccceeiviiiinne.n. 24
CWE-23: Relative Path TIAVEISAL........ccoi ittt e e e e ettt e e e e e nbeee e e e e e anneeeeaeeaannees 31
CWE-24: Path Traversal: " /filEdir...... oo ettt e e ettt e e e e s anne e e e e e s ennbeeeaeeanes 34
CWE-25: Path Traversal: [/fIIEAIro ettt e e e et e e e e s e e e e e e antaeeeaeeannes 35
CWE-26: Path Traversal: '/dir/../filename'................. 35
CWE-27: Path Traversal: 'dir/../../filename’ 36
CWE-28: Path Traversal: ".\iledir'.............ccccceeernns 37
CWE-29: Path Traversal: \..\filename'....................

CWE-30: Path Traversal: \dir\..\filename".................

CWE-31: Path Traversal:

CWE-32: Path Traversal

CWE-33: Path Traversal:

CWE-34: Path Traversal:

CWE-35: Path Traversal: ".../...

CWE-36: Absolute Path Traversal

CWE-37: Path Traversal: ‘/absolute/pathname/here’...

CWE-38: Path Traversal: \absolute\pathname\here' 48
CWE-39: Path Traversal: "CiliMNaIME"..........cuiiiiiiiiriee i ee et e et sre e e e s e e s e nnne e e s neeenenre e e nnnes 49
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)...........ccceeeiiiiiiiieiiniiiieee e 50
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coi i 51
CWE-42: Path Equivalence: 'filename.' (Trailing DOt).........coiiiuiiiieiiiiie e e e e e 53
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........ccuuiiiiiiiiiiei e 53
CWE-44: Path Equivalence: 'file.name' (INterNal DOt)..........uueiiiiiiiiiii e 54
CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............cooiiiiiiiiiiiiiiiiae e 54
CWE-46: Path Equivalence: 'filename ' (Trailing SPaACE).....ccceeiiiuuiiiiiiiiiiiee et e e 55
CWE-47: Path Equivalence: ' filename (Leading SPaCE).......cciiuuiiiieiiiiiiieeeeeiiiiee e e e e e e sieeeea e 56
CWE-48: Path Equivalence: ‘file name' (Internal Whitespace)... 56
CWE-49: Path Equivalence: ‘'filename/' (Trailing Slash)............. 57
CWE-50: Path Equivalence: '//multiple/leading/slash’ 57
CWE-51: Path Equivalence: ‘/multiple//internal/slash’ 58
CWE-52: Path Equivalence: '/multiple/trailing/slash//" 59
CWE-53: Path Equivalence: \multiple\\internal\backslash’ 59
CWE-54: Path Equivalence: ffiledir\' (Trailing BacksIash)..............cooiiiiiiiiiiii e 60
CWE-55: Path Equivalence: '/./' (SINgle DOt DIF€CIOIY)......uuueiie ittt e e eeneeeea s 60
CWE-56: Path Equivalence: filedir® (WIlACArd)............oiiooiiiieiie et a e e ee s 61

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.8.1
Table of Contents

CWE-57:
CWE-58:
CWE-59:
CWE-60:
CWE-61:
CWE-62:
CWE-63:
CWE-64:
CWE-65:
CWE-66:
CWE-67:
CWE-68:
CWE-69:
CWE-70:
CWE-71:
CWE-72:
CWE-73:
CWE-74:
CWE-75:
CWE-76:
CWE-77:
CWE-78:
CWE-79:
CWE-80:
CWE-81:
CWE-82:
CWE-83:
CWE-84:
CWE-85:
CWE-86:
CWE-87:
CWE-88:
CWE-89:
CWE-90:
CWE-91:
CWE-92:
CWE-93:
CWE-94:
CWE-95:
CWE-96:
CWE-97:
CWE-98:

Path Equivalence: 'fakedir/../realdir/filename’.............ccuoiiii i 61
Path Equivalence: Windows 8.3 Filename
Improper Link Resolution Before File Access (‘Link FOIOWING")........ccoviiieiiiiiiiieccccieee e 63
UNIX Path LINK PrODIEMIS.uiiiiiiie ittt sttt st e e et e s st e e nnbeeas 64
UNIX Symbolic Link (Symlink) Following...
UNIX Hard LinK.......ccocooviieniiiienieeiniceee
WiIndows Path LinK ProbIEMS...........oo i 67
Windows Shortcut FOIOWING ((LNK)......ccoiiiiiieiiiiii et e e e e e e e s sarae e e e 68
WINAOWS HAIT LINK..eeieeiiiiiiee ettt sttt et e e sttt e sbb e e anbeeesnteeesnbeeeanbneeenns 69
Improper Handling of File Names that Identify Virtual Resources...
Improper Handling of WIiNdows DeViCe NAMES...........cccviiieiiiiiiieee e e e saarea e 70
WiINdows Virtual File ProbIEmMS.coiiiiiiiiie ettt 71
Failure to Handle Windows ::DATA Alternate Data Stream..........cccoovveeiiiieiiiiee it sieee e 72
MaC Virtual File ProbIEMS.ui ittt e et e e e nnee e e 73
PN o] o I B] (0] (= PRSPPI 73
Improper Handling of Apple HFS+ Alternate Data Stream Path.............cccooovieiiiiii e, 74
External Control of File Name or Path.........ccccoociiiiiieiiniiie e

Failure to Sanitize Data into a Different Plane (‘Injection’)
Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 81
Failure to Resolve Equivalent Special Elements into a Different Plane............cccccocveeeiiiiinc e, 82
Improper Sanitization of Special Elements used in a Command (‘Command Injection’)................... 82
Improper Sanitization of Special Elements used in an OS Command (‘'OS Command Injection’)...... 86
Failure to Preserve Web Page Structure ('Cross-site SCripting’)........ccccovuvireeiiiiiieeeeeiiiiiee e
Improper Sanitization of Script-Related HTML Tags in a Web Page (Basic XSS)........ccccccovevveneennn.
Improper Sanitization of Script in an Error Message Web Page..........ccccccovvviiieeciiiiiiecc e
Improper Sanitization of Script in Attributes of IMG Tags in a Web Page.........cccccceeeeviieee e,
Improper Neutralization of Script in Attributes in a Web Page....................

Failure to Resolve Encoded URI Schemes in a Web Page
Doubled Character XSS ManipUlationS...........cccoiiiiiiiieiiiiieiee e et e e e e e s s e e e e s snraaeas
Improper Neutralization of Invalid Characters in Identifiers in Web Pages...........cccccvvvvieiiiinnnen.n.
Failure to Sanitize Alternate XSS SYNLAX......cciiviuiiiieiiiiiiiie ettt et e s eabaeeee s
Argument Injection or MOIfICALION............cciiiiii i e as
Improper Sanitization of Special Elements used in an SQL Command (‘SQL Injection’)
Failure to Sanitize Data into LDAP Queries ('LDAP INJECtioNn")........ccccvevieiiiiiiiiiee e
XML Injection (aka Blind XPath INJECTION).......c.uuiiiiiiiiiiiie e e e e
DEPRECATED: Improper Sanitization of Custom Special Characters...........cccccceeevvciieieeeeiiinnennn.
Failure to Sanitize CRLF Sequences ("CRLF INJECHON")..........cviiiiiiiiiie e
Failure to Control Generation of Code ('Code INJECION")........cccviiiieiiiiiiee e
Improper Sanitization of Directives in Dynamically Evaluated Code ('Eval Injection’).....................
Improper Neutralization of Directives in Statically Saved Code (‘Static Code Injection’).................
Failure to Sanitize Server-Side Includes (SSI) Within a Web Page..........ccccoovveeiiiiiiiiecce e,
Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File

g ol (U7 To] o 1 IO PPP O PPPR 129

CWE-99:

CWE-100:
CWE-101:
CWE-102:
CWE-103:
CWE-104:
CWE-105:
CWE-106:
CWE-107:
CWE-108:
CWE-109:
CWE-110:
CWE-111:
CWE-112:
CWE-113:
CWE-114:
CWE-115:
CWE-116:

Improper Control of Resource Identifiers ('Resource INjection’)...........ccccvvveeeiiiiiiiee e 134
Technology-Specific Input Validation Problems..............ooeiiiiiiic e
Struts Validation ProbIEmS... ...t s
Struts: Duplicate Validation FOIMMS.........ccuuiiiiiiiiiie e aaraee s
Struts: Incomplete validate() Method Definition.............coociiiii i
Struts: Form Bean Does Not Extend Validation Class
Struts: Form Field Without Validator..........c.oiuiiiiiieiiie e
Struts: Plug-in Framework not in Use
Struts: Unused Validation FOMM.... ..ottt e
Struts: Unvalidated ACHON FOMM.........oiiiiiiiiiii ittt e e e e s aeeeesebeeennes
Struts: Validator TUMMEd Off.......ooiiiieie et e e
Struts: Validator Without FOrm FIeld..........cooiiiioiiiiiie e
Direct Use Of UNSAE JINL....ccoiiiiiiiiiiiiie ittt sttt e et e e e e e s
MiISSING XML ValidatioN.........oooiiiiiiiiiiie it e et e e e e e st e e e e e s atae e e e e s eaneees
Failure to Sanitize CRLF Sequences in HTTP Headers ((HTTP Response Splitting")................... 147
[(o ToT TS O] 11 o PR
Misinterpretation of Input..........ccccceeveeiiiiinenen.

Improper Encoding or Escaping of Output

iv

CWE Version 1.8.1
Table of Contents

CWE-117:
CWE-118:
CWE-119:
CWE-120:
CWE-121:
CWE-122:
CWE-123:
CWE-124:
CWE-125:
CWE-126:
CWE-127:
CWE-128:
CWE-129:
CWE-130:
CWE-131:
CWE-132:
CWE-133:
CWE-134:
CWE-135:
CWE-136:
CWE-137:
CWE-138:
CWE-139:
CWE-140:
CWE-141:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-169:
CWE-170:
CWE-171:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:

Improper Output SANItiZAtION TOF LOGS......cciiiiiiie ettt et e et e e e s 158
Improper Access of Indexable Resource ('Range ErTor).........ccccvveveeiiiiieieeececiiieeee e 160
Failure to Constrain Operations within the Bounds of a Memory Buffer...........cccccoovviieeiceiiinnen. 160
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")..........cccccoovvvvieeeiiiiiiieneeen. 166
Stack-based BUfer OVEIMIOW...........coiiiiiii et 171
Heap-based BUffer OVEIMIOW.uviiiii e e e e st 173
Write-What-Where CONAItION.coouuiiiiiiieiiie e st e et e st neeeas 174
Buffer Underwrite ('Buffer UnNderflow)..........coooiiiiiiiiiiiiiiice et 175
Out-of-bounds Read
Buffer Over-read.....................
0] =T 0T g Lo (] == Vo SR PPTRR
AV Yo=Y do 10T g o I =1 (o) SO USTPPPPP
Improper Validation of Array INAEX.........ccuiiiiiiiiiiiii e
Improper Handling of Length Parameter INCONSISIENCYevevieiiiiiiiie e
Incorrect Calculation of BUfEr SIZe........occuiiiiiiiiiiii e
DEPRECATED (Duplicate): Miscalculated Null Termination
Y ([T T = o] £ TSR PROUPPRPRN
Uncontrolled Format String
Incorrect Calculation of Multi-Byte String LENGtN.........c.cooiiiiiiiiiii e
B Y LT 4o £ PSPPSRSO
REPIESENTALION EFTOIS. .. iiiiieiiiieitieiieestee st e stee et e st e et e s tbe e teess e e steeanbeesbeeanbeesseeasteesseeesbeesneeenseennes
Improper Neutralization of Special EIEMENtS...........cocoiiiiiiiiiiiiiii e
DEPRECATED: General Special Element Problems..........ccccoooviiiiiiiiiiiiiie e
Failure t0 Sanitize DeliMItErS........coiuiiiiiiii ettt e nee e
Improper Neutralization of Parameter/Argument Delimiters...........ccccoveiiiiee e iciiieec e
Improper Neutralization of Value DeliMIters..........ccciuiiieiiiiiiiee e
Improper Neutralization of Record Delimiters
Improper Neutralization of Line Delimiters................
Improper Neutralization of Section Delimiters
Improper Neutralization of Expression/Command Delimiters
Improper Neutralization of INPUt TEIMINALOIS.c.uvviieiiiiiie e e e

Failure to Sanitize INPUL LEAETS.ccoiiiiiii et et e e e e e e e s earaaee s

Failure to Sanitize QUOLING SYNTAX........ceiiiiiiiiiiie et ee e e e e e e e e s s e e e s s saar e e e e e s etbaeeaeeaaans

Improper Neutralization of Escape, Meta, or Control SEQUENCES..........cceeeeeeeiiiieeeeeiiiiier e 208
Improper Neutralization of Comment Delimiters
Improper Neutralization of Macro SYMDBOIS.........cccviiiiiiiiiiie e
Improper Neutralization of Substitution Characters............occoviieeiiiiiiiie e
Improper Neutralization of Variable Name Delimiters...........ccccviviieiiiiiiiie e
Improper Neutralization of Wildcards or Matching Symbols
Improper Neutralization of WhItE@SPACE.ccccuiiiii i
Failure to Sanitize Paired DelIMIErS...........cuiiiiiiiiiieiiee e
Improper Neutralization of Null Byte or NUL Character...........ccccoeivvieiieiiiiiiice e
Failure to Sanitize Special Element
Improper Neutralization of Leading Special EIEmMentS...........cccovevieiiiiiiiee e

Improper Neutralization of Multiple Leading Special Elements............c.cccoociviieeiiiiiieec e 219
Improper Neutralization of Trailing Special EIements..........cccceeeiiiiiiiiii e 220
Improper Neutralization of Multiple Trailing Special Elements............cccccoviiiiie i 220
Improper Neutralization of Internal Special Elements............ccccovvviie i 221
Improper Neutralization of Multiple Internal Special Elements.............ccoccvvvee i 222
Improper Handling of Missing Special EIeMEeNt.............ccoiiiiiiiiiiiiiiiee e 223
Improper Handling of Additional Special Element..............ooeiiiiiiiiii i 224
Failure to Resolve Inconsistent Special EIEMENTS............oeiieiiiiiiiiii i 225
Technology-Specific Special EIBMENES.........cciiiiiiii e 225
Improper NUll TermMINALION.oiii i e e s e e e e e e s aar e e e e e s saraereeeaaanes 226
Cleansing, Canonicalization, and CompariSON EFTOrS.........cc.ceeiviiiuiieeeeeiiiieree e e e e esiveee e e 229
[g Tt o [Ta e [=X o PR PSP PPRRPPPPRN

Failure to Handle Alternate ENCOTING.........cccviiiieiiiiiiiee ettt e e e e e stae e e e e eirree e e e e

Double Decoding of the SAmME Data..........cccoiiiiiiiie i e e e

Failure to Handle MiXed ENCOTING.......cccoiiiuiiiieiiiiiiiie ettt e et e e et e e et e e e e e e eaaee s

Failure to Handle Unicode ENCOING.......c..uuiiiiiiiiiiei ettt et e e e eiaane e s

Failure to Handle URL Encoding (Hex Encoding)

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.8.1
Table of Contents

CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-189:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-199:
CWE-200:
CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-217:
CWE-218:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-225:
CWE-226:
CWE-227:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:

Failure to ReS0IVE Case SENSIIVILY.......cccuuiiiiiiiiiiiiee et e e e e aaeee s 236
Incorrect Behavior Order: Early Validation.............coooiiiiiiiiiiiiiieic e 238
Incorrect Behavior Order: Validate Before CanoniCalize.............coooeevviivviiiiivieeeiiiiieeeeeeeeeeeeeeeeeenn 239
Incorrect Behavior Order: Validate Before Filter.........ccocoiiiiiiiiiiiiiieiiiieeeeeeeeee e 240
Collapse of Data Into Unsafe Value

Permissive Whitelist
Incomplete Blacklist
INCOITECt REQUIAT EXPIrESSION......utiiiii ittt e et s e e e e et e e e e e st e e e e s ansaa e e e e e e e annraeeeas

Overly Restrictive Regular EXPreSSIiON..........uuuiiiiiiiiiiri et ee e esite e st e s s e e e e e enaaeee e e s anens 246
Partial Comparison
Reliance on Data/MemOry LAYOUL...........ueieeiiiiiiiiee e it e e s ettt e e e e st e e e e st e e e s e eaaa e e e e e s saraeeaeeans
N0 T=T ol T o =T PSP SUPRR
Integer Overflow or WraparOUNG..........c.uuiiiiiiiiiiiie et e et e et e e e e e e e e e e s rntreeaaeean
Integer Underflow (Wrap or Wraparound).............eeiieeiiiiiiieeicciiiece et e st e e s saae e e e e e eneneee s
L) Yo =T o= (ot o] o T o | SRRSO
(@18 o)At o] g LT 1 o] SO PEPRRPPPPPN
Unexpected SigN EXIENSION.........ciii ittt e e e e e e e st e e e e s e b a e e e e e s snraeeeeeaan
Signed to Unsigned Conversion Error
Unsigned to Signed Conversion Error

NUMETC TIUNCAION EITON ... ettt sttt e et s e e nbe e e sntn e e nes

Use Of INCOITect BYte OFUEIING.......cuvviieeeiiitiiiie ettt et e e s e e e e st e e e e s et er e e e e s s sanbeeeeeeanees
Information ManagemeENnt EITOIS.........coiiiiiiiiiii et e e e e et a e e st re e e e e e e anees
INFOrMALION EXPOSUIE.uiiiiiiiiiiie e e ettt e e et e e e e et e e e s st e e e e s etb e e e e e e s aaabeeeeeesntaeseeesatbaeeaeeaanes
Information Leak Through Sent Data...........cccciviiiiiiiiiiiiiie e a e e sarae e e
Privacy Leak through Data QUETIES.c.uuiiiieiiiiiiiee ettt e e e e e et e e e s eavaee s
Information Exposure Through DiSCIEPANCY..........ceeiiiiiiiiieeee it e e e
Response Discrepancy INformation Leak.............cooiiiiiiiiiiiiiiiie e
Information Exposure Through Behavioral Discrepancy

Internal Behavioral Inconsistency Information Leak.............ccccvveveeiiiiinic e,

Information Exposure Through an External Behavioral Inconsistency

Timing Discrepancy INformation LeaK.............coiiiiiiiiiiiiiiiiie et
Information Exposure Through an Error MESSAQE.cociuvriiiiiiiiuiiiii et e e eeiaee e et e e e e
Product-Generated Error Message Information Leak..............ccocvviiiiiiiiiiiee e
Product-External Error Message Information LeakK..........c.uvevieiiiiieiieiiiiiiieee e
Improper Cross-boundary Removal of Sensitive Data............cccccveeeiiiiiiieei i
Intended INFOrMALION LEAK.........cuuiiiiiiiiiiiie ettt e e anbee e e
Process Environment INfOrmation LEaK...........ccoiuiiiiiiiiiiiiie e
Information Leak Through Debug Information

Containment Errors (CONtaiNEr EITOIS)......ccocuiiiieiiiiiiiie ettt e et e e et e e rae e e e
DEPRECATED: Failure to Protect Stored Data from Modification..............ccccovvvieriieiiieneniieenns
DEPRECATED (Duplicate): Failure to provide confidentiality for stored data...............ccccceeeeennns 288
Sensitive Data UNder WED ROOL............iiiuiiiiiii et neaee s 288
Sensitive Data UNder FTP ROOL.......cooiuiiiiiie ettt e 288
INFOrMation LOSS OF OIMUSSION.cciuuiiiiiiieiitiiee st e ettt ee st e e st e st e e st e e sbe e e s bt e e e anbeeesneeeeneneeas 289
Truncation of Security-relevant INfOrmMation..............ccooviiiiiiiiiiiiee e 290
Omission of Security-relevant INfOrmMation.............ccoociiiiie i 290
Obscured Security-relevant Information by Alternate Name...........cccocveeeiiiiiiiiee e 291
DEPRECATED (Duplicate): General Information Management Problems...........cccccccoovviiiieenis 291
Sensitive Information Uncleared Before Release...........ooceeiiiiiiiiiiiiiiieieee e 291
Failure to Fulfill API Contract (API ADUSE").........oiii ittt 293
Improper Handling of Syntactically Invalid StruCture...........ccoveeeiiiiiiiee e 294
Improper Handling Of ValUES.........coocuiiiiii ettt e e e et e e e e s etrae e e e e eanes 295
Improper Handling of MISSING ValUES..........ccviiiiiiiiiee ettt e e 296
Improper Handling of EXIra ValUES..........ccuuiiiiiiiiiiiie ettt et 296
Improper Handling of Undefined ValUEs...........cc.uviiiiiiiiiiiiic et 297
Parameter ProDIEMS........ooouiiiiiiie e s
Failure to Handle Missing Parameter

Improper Handling of EXIra Parameters.........ccuvviiiiiiiiiiiee ettt e s savane e 299
Improper Handling of Undefined Parameters...........c.ueeieiiiiiiiiec et 300
Improper Handling of Structural EIEMENTS.............oooiiiiiiiii et 300
Improper Handling of Incomplete Structural Elements...........cccoeoiiiiieei i 300

Vi

CWE Version 1.8.1
Table of Contents

CWE-239: Failure to Handle Incomplete EIEMENT...........cooiiiiiii i
CWE-240: Improper Handling of Inconsistent Structural EIEmMents............cccccvveeiiiiiiiei i
CWE-241: Improper Handling of Unexpected Data TYPE........cciuuiiiiiiiiiiiiee et e sttt e e st e e e e e
CWE-242: Use of Inherently Dangerous FUNCLON............coiiiiiiiii ittt
CWE-243: Failure to Change Working Directory in chroot Jail.............cc..ccoevveenen.

CWE-244: Failure to Clear Heap Memory Before Release (‘Heap Inspection’)
CWE-245: J2EE Bad Practices: Direct Management of CONNECHIONS...........cccvevieeiiiiiiiiee e
CWE-246: J2EE Bad Practices: DireCt USE Of SOCKELS.........ueiiiiiiiiiiieiiiee e
CWE-247: Reliance on DNS Lookups in @ Security DECISION...........ccoiiiiiiiiiiiiiiiee e ccciee e e e
CWE-248: UNCAUGNT EXCEPLION.cciiiiiiiiiiie e ieiiiee e ettt e e s et e e e e sttt e e e e st e e e e e s eetbaaeeaeeassbbaeeeessaatbaseeesansnnees
CWE-249: DEPRECATED: Often Misused: Path Manipulation.............c.ccccccuiiiie i
CWE-250: Execution with Unnecessary PriVIIEgES.cccuuiiii ittt a e
CWE-251: Often Misused: String ManagemENT...........cciuriiiieiiiiiiiiie e e eiiiie e e e e s riree e e e s e eta e e e e e sata e e e e e s snsbaeeeaeaaans
CWE-252: Unchecked RETUIN VaAlUE........cocuuiiiiiiiiiie ettt sttt et s e e e e ntn e nes
CWE-253: Incorrect Check of Function Return Value
CWE-254: SECUILY FRAMUIES........ueiiieiiiiieiee et e et e e e e e e e e e e s e e e e e e eeabeeeeeeeasatbaeeeessaatbaseaeeaasssneeeeessnres
CWE-255: Credentials Management..............cccceeveeevennneen.
CWE-256: Plaintext Storage of a Password
CWE-257: Storing Passwords in a Recoverable Format
CWE-258: Empty Password in Configuration File.............ccoiiiiiiii it
CWE-259: Use Of Hard-Coded PasSWOIT...........coiuiieiiiieiiiiieiiiee sttt sttt saee et eesnte e e sneeeesnneeas
CWE-260: Password in Configuration File............oiiiiiiiiiiiii e e e et a e e e saba e e e e ennees
CWE-261: Weak Cryptography for PasSSWOIAS...........coiiiiiiiieiiiiiiiie ettt e ettt e e e e satve e e e e s snavaeeeeeeaans
CWE-262: NOt USING PaSSWOIA AQING.....uuiiiiiiiiiiiiiee et e e ettt e e et s e e e st e e e e e s et ae e e e e s assbneeeeesasntbeeaeesanees
CWE-263: Password Aging With LONG EXPIratioN.........c.uveiieiiiiiiiie et e et eeire e e e e e sanae e e e e s e
CWE-264: Permissions, Privileges, and ACCEeSS CONIOIS..........cccciiiiiiiiieiiiiiiiee et
CWE-265: Privilege / SANUDOX ISSUES........ceiiiiiiiiiiieeiciitiee e sttt e sttt e e e e e st e e e e e s etb e e e e e s e aaraeeaeessaatreeeeesanes
CWE-266: Incorrect Privilege Assignment
CWE-267: Privilege Defined With Unsafe ACHONS.........cccoiiiiiiiie ittt e e et e e e
CWE-268: Privilege ChaiNiNg........ccuvviiiiiiiiiiiie ettt e st e e e s st e e e e s et a e e e e s s sabb e e e e s ssatbeeeaessaaaeeeaeeaans
CWE-269: Improper Privilege ManagemeENt..........uuuiieiiiiiiieeeeiiiiiee e e e seiie et e e s seiree e e e s e eeeesssntreeeeessnnbseeeeesannes
CWE-270: Privilege ConteXt SWItChING EITOF..........ciiiiiiiiiiie et e st e e st e e e e e e e e e s sareeaeeesaees
CWE-271: Privilege Dropping / LOWEING EITOIS......cciiiiiiiiie ettt e et e e e e e e s stve e e e e s e snaaaeeaeeaans
CWE-272: Least Privilege VIOlatioN.............uiiiiiiiiiie ettt e et s et e e e s et e e e e e e sata e e e e e s entbeaeaeenanes
CWE-273: Improper Check for Dropped Privileges .
CWE-274: Improper Handling of INSUffiCient PrivilEges...........ueiii i
CWE-275: PEIMISSION [SSUES....cciutiiiiitiieittieaittte e et e sttt et eeeate e e s aee e e stbe e e aate e e sneeeessbeeesnbbeeenbeeesnbeeestaeeennneas
CWE-276: Incorrect Default PerMISSIONS.iiiiiiiiiiiieeiiie ettt sttt s e e snbae e s nnee e snbeeas
CWE-277: Insecure INherited PermMISSIONS.c..iiiiiiiiiiiie ittt ettt e snbe e e snne e nanes
CWE-278: Insecure Preserved Inherited PermiSSiONS...........oueiiiiiiiiiiieiiiie et e s
CWE-279: Incorrect Execution-Assigned PermMiSSIONS............coiiiiiiieiiiiiiiee e e ciiiiee e st e e s e e e e e ssaaneeae e
CWE-280: Improper Handling of Insufficient Permissions or Privilegesccccccceeiiiiiiieeeiciiiiiee e
CWE-281: Improper Preservation of Permissions
CWE-282: Improper OwWnership ManagemeENt...........uiieiiiuiieii e e ittt e e eeiire e e e e stre e e e e s stbae e e e s seanaeeaeeesntrereeeaan
CWE-283: UNVENfied OWNEISNIP.....uuiiiiiiiiiiii ettt e ettt s ettt e e s et e e e e e st e e e e e e satbeeeeessnsbaeeeeeaanes
CWE-284: Access Control (Authorization) Issues
CWE-285: Improper Access Control (AUtNOMZAtION)............coiiiiiiiie i e s e e e et e e e e
CWE-286: INCOreCt USEr MaNAQEIMENT.........uuuiuitiiiiiiiiiiiiiietteteeeeeeesesasssasssssstarsrarererarrrereretttaaaaaeeeeesesnnnnnannns
CWE-287: Improper AUTNENTICALION.ioiiiiiiiee e e e e e e s et e e e s et tr e e e e e aratbe e e e e s snsaeeas
CWE-288: Authentication Bypass Using an Alternate Path or Channel
CWE-289: Authentication Bypass by Alternate Name...........ccccccoeeevivieeeeeeiiiinennn.

CWE-290: Authentication Bypass BY SPOOfiNG.......cccoiiiiiiiiiiiiiiic et e e e e e e
CWE-291: Trusting Self-reported IP AAreSS........cocuuiiii ittt e e e e e e e e e s e aareee s
CWE-292: Trusting Self-reported DNS NAME.........ooviiiiiiiiiie ettt e e e e e e e e e s st rer e e e s snsbaeeeeeaaaes
CWE-293: Using Referer Field for AUthentiCation..............coooiiiiii i
CWE-294: Authentication Bypass by Capture-replay........cccoviiiiiiiiiiiie i see e
CWE-295: CErtifiCAIE ISSUBS......eiiitiiiiiiiiee ittt ettt s bbbt e sttt e sabe e e e bb e e e anbe e e snbe e e s nbbeeeanbeeennnees
CWE-296: Improper Following of Chain of Trust for Certificate Validation...............cccccceiiiiiiiiiii i,
CWE-297: Improper Validation of Host-specific Certificate Data...........c.cceeeiviiiiiie i
CWE-298: Improper Validation of Certificate EXPIration.............ccoiiiiiiiii it
CWE-299: Improper Check for Certificate REVOCALION...........cociiiiiiiiiiiiiiiice e

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.8.1
Table of Contents

CWE-300:
CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-310:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-320:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351.:
CWE-352:
CWE-353:
CWE-354:
CWE-355:
CWE-356:
CWE-357:
CWE-358:
CWE-359:
CWE-360:

Channel Accessible by Non-Endpoint (‘Man-in-the-MiddI€")...........ccccceeiiiiiiiiiie e, 372
Reflection Attack in an Authentication Protocol

Authentication Bypass by Assumed-Immutable Data............cccveeieeiiiiiiiee e 375
Incorrect Implementation of Authentication AlQOrithm..........ccccveviiiiiiiiie e 376
Missing Critical Step in Authentication.............ccccccoevvvveeeens

Authentication Bypass by Primary Weakness

Missing Authentication for Critical FUNCHON............coociiiiiiiiie e
Improper Restriction of Excessive Authentication AttemMPLS........cc.eveeiiiiiiiee e 381
Use of Single-factor AUTHENTICALION............coiiiiiiii e e a e 383
Use of Password System for Primary Authentication.............ccccvevieiiiiiiiiie e 384
(019 o] toTs [£=T o] a1 [oa EY - U 1= PSSP PPP 385
Missing ENncryption of SENSItIVE Datal.........c..evieeiiiiiiiiii e e e e e e e aaees 386
Cleartext Storage of Sensitive INfOrmMation...............oooiiiiiiiie i 390
Plaintext Storage in @ File 0r 0N DiSK..........ooiiiiiiiiiiic e 391
Plaintext Storage in the REQISIIY.......cuuiiii i e s ebaa e e e e e 391
Plaintext Storage in @ COOKIE.........ciiiiiiiiiiie e e e et e e e e st e e e e s aaraeeeaean 392
PlainteXt STOrage iN MEMOIY.......cciiiiiiiie ettt e e e e e s et e e e e e et b e e e e e esntaeeaeesannees 392
Plaintext STOrage iN GULL........ooiiiiiiii et e e e e e e ettt e e e e e st e e e e e s aabaaeaaean 393
Plaintext Storage in EXECULADIE.uiiiiiiiiieie e 394
Cleartext Transmission of Sensitive INfOrmMation.............cccoiiiiiiniiiii e 394
KEY MaNAGEMENT EFTOIS.iiiiiiiiiiiiiiiieeie ittt e e e e e e e s s s st e e et eeaeaaaeaeaaeeeesassasassnnensneneees 396
Use of Hard-coded CryptographiC KEY........c.uueiiiiiiiiiiii sttt e e e 397
Key Exchange without Entity AUtheNtiCAtioN.............ociiuiiiiiiiiiiie e 398
Reusing a Nonce, Key Pair in ENCIYPLON........ccoiciiiiii ettt e et 399
Use of a Key Past its EXPIration Date............ceiiiiiiiiiiiie ettt e e e entae e e e e 401
Missing Required CryptographiC STEP......c.uuiiiiiiiiiiiiee e e 401
Inadequate ENCryption Strength.........ccoeeiiiiiiii e 402
Use of a Broken or Risky Cryptographic AlgOrithme..........cccveiiiiiiiiiiii e 404
Reversible One-Way Hash............ooiiiiiii et a e 406
Not Using a Random IV with CBC MOUE.........cccoiiiiiiiie ittt e 407
Use of Insufficiently RANAOM ValUES...........ccuiiiiiiiiiiiiici ettt a e 408
oIS 0 (o [=T L A = a1 (0] o) PRSP 412
Insufficient ENtropy in PRING..........oiiiiiiiiiie ettt e e e et e e e e s et e e e e e eeaaaaeae s 412
Improper Handling of Insufficient Entropy in TRNG.........c.cooiiiiiiiiiiiiiie e 414
Small Space of RANAOM VAIUES.........ccooiiiiiiiii et e e e e e eatree s

[S N RS T =T To B 1 o SRR PPP
SamME SEEA IN PRINGottt ettt sttt e e st e e sb e e e e nbbe e e snteeesnnes
Predictable Seed iN PRNG........coiiiiiii ittt st e et saee e sanee s

Use of Cryptographically Weak PRNG....

Small Seed Space in PRNG...........c.cccee...

Predictability ProbIEMS.........oooiiiiee e
Predictable from ObServable SEAte...........cccoiuiiiiiiieiiii e
Predictable Exact Value from Previous ValUES...........cccooiiiiiiiiiiiiiiee e
Predictable Value Range from Previous ValUEs............cccoviieiiiiiiiie e

Use of Invariant Value in Dynamically Changing ConteXt..........ccccocvvuveieeeiiiiiiiiee e
Insufficient Verification of Data AUtheNtiCItY.........cc.uviriiiiiiieie e
Origin Validation EFTOr........ciiiiiiiiiiee ettt e e e e e e e e e e s st e e e e e s e abr e e e e e e annreeaaeeans
Improper Verification of CryptographiC Signature............cccuuieeeiiiiiiiee e

USE Of LESS TIUSIEA SOUICE....cciuiiieiitiie ittt ettt et st e bt e s nbee e ste e e nnbeeesnbeeeens
Acceptance of Extraneous Untrusted Data With Trusted Data

Improperly Trusted REVEISE DINS........ccoiiiiiiie it e e e s e e e e e earaee s
INSUFfICIENt TYPE DISHINCHON.ciiiiiiieee e ittt e e e e s e e e e et a e e e e e e ata e e e e e s snareeas
Cross-Site Request FOrgery (CSRF) ...ttt e e e et e et
Failure to Add Integrity CheCK ValUE...........coiiiiiiiie ittt
Improper Validation of Integrity Check ValUe..............oooiiiiiiiiiiii e

USEr INtEIACE SECUILY ISSUBS.....uuiiiiiiiiiiee et e s e e e et e e e e e et e e e e e s stbaaeaeean
Product Ul does not Warn User of Unsafe ACHONS..........cccoiiiiiiiiiiiiiiie e
Insufficient Ul Warning of Dangerous OPErationS..........cuuveeeiiiiiieeeeiiiiieee e s ssiiere e e e eeirree e e e s ssveeeas
Improperly Implemented Security Check for Standard..............cccceeeiiiiiiiie e
A2 10y YA/ To] F= L1 (o] PO PP PUPR
Trust of System Event Data

viii

CWE Version 1.8.1
Table of Contents

CWE-361.:
CWE-362:
CWE-363:
CWE-364:
CWE-365:
CWE-366:
CWE-367:
CWE-368:
CWE-369:
CWE-370:
CWE-371:
CWE-372:
CWE-373:
CWE-374:
CWE-375:
CWE-376:
CWE-377:
CWE-378:
CWE-379:
CWE-380:
CWE-381.:
CWE-382:
CWE-383:
CWE-384:
CWE-385:
CWE-386:
CWE-387:
CWE-388:
CWE-389:
CWE-390:
CWE-391:
CWE-392:
CWE-393:
CWE-394:
CWE-395:
CWE-396:
CWE-397:
CWE-398:
CWE-399:
CWE-400:
CWE-401.:
CWE-402:
CWE-403:
CWE-404:
CWE-405:
CWE-406:
CWE-407:
CWE-408:
CWE-409:
CWE-410:
CWE-411:
CWE-412:
CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-417:
CWE-418:
CWE-419:
CWE-420:
CWE-421.:

AT T (o IS r= L= PR TR
[ot @0 o o 1o o FOU PRSP
Race Condition Enabling Link FOHOWING.........ccoiiiiiiieiiiiiee e e
Signal Handler RAce CONAITION............uviiieiiiiiiiee e e e e e e e e e e st e e e e s snataeeeaeaannes
Race Condition iN SWILCN......cciiuiiiiii e
Race Condition within a Thread
Time-of-check Time-of-use (TOCTOU) Race Condition...........cccuveeeeiviiiiiieeeeiiiiiee et
Context Switching Race CONITION.........ccuviiieiiiiiiie e e e e e e e e earaeeeas
DAV o Lo =T (o T PRSP SPPP
Missing Check for Certificate Revocation after Initial Check
STALE ISSUEBS.... ettt e oottt e e ookttt e e e ek e et e e e e e n b et e e e e e e e e e n e aree s
Incomplete Internal State DiStINCHON..........c.uviiiiiiiiiee e
State SYNCHIrONIZAtION EITOr.........oiiiiiiiie e e e e e e e e e e s e e e e e e s anees
Mutable Objects Passed by REfEIENCE...........ccoiiiiiiiiiiiiiee e
Passing Mutable Objects to an Untrusted Method.............ccooviiiiiiiiiiiec e
TEMPOTANY Fil ISSUES.....ueiii ittt e e e et e e e e st e e e e e s etbr e e e e e eaasbaeaaeeaas
Insecure Temporary File

Creation of Temporary File With Insecure Permissions
Creation of Temporary File in Directory with Incorrect PErmissions...........ccccccoceveveeeiiiiiieeeeeeeins
Technology-Specific Time and State ISSUES...........ciieiiiiiiiiee e e
J2EE TimME ANd SEALE ISSUES. ...cocuuiiiiiiieiiieeeiiie ettt ettt ettt et e et e e sabe e e e tb e e snteeesnneeeesnbeeens
J2EE Bad Practices: Use 0f SYStem.eXit()......ccouurieiiiiiiiiiei ittt et e
J2EE Bad Practices: Direct Use Of Threads..........ooviuiiiiiiiiiiiie et
TSI (o] g e 11T] o PO PSPPI
Covert TIMING ChanNEl.........ooooiiiiie e e e e e e e e e st r e e e s eabaaeeaean
Symbolic Name not Mapping to CorreCt ODJECE.........ccuiiiiii i
Yo F= I A4 (o] =T PP PSR
[o gl s F= T o |10 To T ORI
Error Conditions, Return Values, Status COUES..........cciiiiiiiiiiiieiiiie et
Detection of Error Condition WithOut ACHION...........ooiiiiiiiiiiiie i
Unchecked Error CONQITION.........ocuiiiiiiieiiiie ettt ettt e s be et e e snte e e sneeeennneee s
Failure to Report Error in StatUS COOE........ccciuiiiiiiiiiiiii ettt e e e e e e tvaeea e
Return of Wrong StatuS COUE..........uuiiiiiiiiiiei ettt e et e e e e st e e e e e e e anees
Unexpected Status Code or REtUIMN VaAlUE..........coiiiiiiieiiiiiiie e
Use of NullPointerException Catch to Detect NULL Pointer Dereference
Declaration of Catch for Generic EXCEPLION..........coviiiiiiiiei ettt
Declaration of Throws for Generic EXCEPLON........c.vviiii it
Indicator of Poor Code Quality
ResoUrce ManagemeENt EITOIS.........oiuiiiiiiiiiiiie ettt ettt e e s e e tb e e snte e e sbeeeeseneeens
Uncontrolled Resource Consumption ("Resource Exhaustion’)
Failure to Release Memory Before Removing Last Reference (‘Memory Leak').........c.cccoevveeeenn. 490
Transmission of Private Resources into a New Sphere ('Resource Leak')........cccccceeviiveveeenennnen. 492
UNIX File DESCHPIOr LEAK.......cvirieii e ittt e sttt e e ettt e e e st e e e s et e e e s e e aaa e e e e e e sanraeaeeeaan 493
Improper Resource Shutdown OF REIEASE..........cccuvviiiiiiiiiiie e e 493
Asymmetric Resource Consumption (Amplification)...........ccccociiiiieiiiiiiiecee e 497
Insufficient Control of Network Message Volume (Network Amplification)...........ccccooevvveeeeiinnnnn. 498
AlGOrItNMIC COMPIEXITY....eiiiiiiiiiiiie ettt e s e e e st e e e s e sbea e e e e e s saabaeeeessnatbeseaeaannes
Incorrect Behavior Order: Early AMplfiCation...........c.ooiiiiiiiiiii e
Improper Handling of Highly Compressed Data (Data Amplification)
Insufficient RESOUICe POOL.........c.ooiiiiiiiiiiic e
Resource Locking Problems
Unrestricted Externally Accessible Lock

INSUFfiCiEeNt RESOUICE LOCKING......iiiiiiiiiiiie ettt e e e e e e e e st e e e e s etbaaeeeeeaaes
MISSING LOCK CRECK....cei ittt e e e e s et e e e e s e ae e e e e e entraeeas
(D oT0] o] (=R (T TP P TP TPPPTRRN
O N (=T (=T T PP TPPPTRR
Channel and Path EITOIS........coouiiiiiiiiie et sttt st e e snb e e e enbee e nees
(@1 F-T o] o 1= I = (] £ PP PPTPPR
Unprotected Primary Channel...........oovi oot e e e
Unprotected Alternate Channel............ooooiiiiiiiii e
Race Condition During Access to Alternate Channel............cccoovveviiiiiiiii e

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.8.1
Table of Contents

CWE-422:
CWE-423:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-429:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-438:
CWE-439:
CWE-440:
CWE-441.:
CWE-442:
CWE-443:
CWE-444:
CWE-445:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-452:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-458:
CWE-459:
CWE-460:
CWE-461.:
CWE-462:
CWE-463:
CWE-464:
CWE-465:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.:
CWE-482:

Unprotected Windows Messaging Channel ('Shatter')...........cccooviieiiiiiiieee e 513
DEPRECATED (Duplicate): Proxied Trusted Channel..........c.cceeooiiiiieiiiiiiiiiiee e 514
Failure to Protect Alternate Path............cccooiiiiiiiiii e
Direct Request (‘Forced Browsing')
UNtrusted SEAIrCH Path........o.oiiiiiiiiii et et e e e e nee
Uncontrolled Search Path Element
Unquoted Search Path or Element
[Eo T oo [T gy (o] £ F PR RTPRP TP
Deployment of Wrong HAaNAIET...........cooiiiiiiii et e s eeaaraeea s
[Tt e To [F= Lo 1] PO PUPRSUPPRPRN
Dangerous Handler not Disabled During Sensitive Operations............c.cccvvveeeiiiiuiieeeeesiiieeee e
Unparsed Raw Web Content DEIIVETY........ccuuviiieiiiiiiee ettt e et e e e
Unrestricted Upload of File with Dangerous TYPe........ceiiiiiiieiie e eeiieee et eivree e e
101 (=T = Tot i o] o T = (o] PRSPPI
INterpretation CONlICE..........iii e e e e e e et e e e e e s st e e e e e s etbaeeaeeaanes
Incomplete Model of Endpoint Features..................
Behavioral ProbIEIMS.oo et
Behavioral Change in New Version or ENVIFONMENt...........coooiiiiiiiieiiiiiiei et
Expected Behavior VIOIatioN.............iiiiiiiiiiie ettt e e e s e e e e e eanreee s
Unintended ProxXy/INtEIMEMIAIY........cccoiiiiiiii ettt e e e et e e e s st e e e e e s staaaea s
WeD ProbIemsS........ooiiiiiiieiee e
DEPRECATED (Duplicate): HTTP response splitting
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling’).......ccccceeevvvvveeeeeinns
User Interface Errors
Ul Discrepancy for SECUNLY FEATUIE..........uuiiie ittt e e e e e e s e ataeee s
Unimplemented or Unsupported Feature in Ul
ODbSO0lEte FEAUIE 1N Ul..iiiiiiiiiiiii ettt e e sttt e e e et e e ente e e snneas
The Ul Performs the Wrong Action...................

Multiple Interpretations of Ul Input..................

Ul Misrepresentation of Critical Information
Initialization and ClIEANUP EITOIS.........cuuiiieiiiiiiiee e ettt e e e s e e e e s et e e e e e e et e e e e e e sntreeaeeaan
Insecure Default Variable INitialiZation.............oociiiiiiiii s
External Initialization of Trusted Variables or Data StOres..........cccocueeeriiiiiiiee e
Non-exit on Failed INtaliZatION.cueiiiiiii e
MISSING INIGAIIZATION.ccceiiiiiii e e e e e s et e e e e e s b e e e e e e sabaereeesesreees
Use of Uninitialized Variable.............ooiiiiiii e
DEPRECATED: INCOIrect INItIAliZAtioN.coiiiiiiiiiieiiiee e
[aToTo]] o1 (=] (R @ == T U] o B OROPPPPRP
Improper Cleanup on Thrown Exception
DaAta SIMUCIUIE ISSUBS.......eeeiiiiiiiiiie ettt et e e e et e e e st e e e e e e anen e e e e e e sanbreeeeeaan
Duplicate Key in AsSOCIative LiSt (AlISL).......cciuuiiiiiiiiiiiie ettt e e e e e
Deletion of Data StruCture SENtINEL..........cooiiuiie i e e
Addition of Data Structure Sentinel
(0] (=T g U PP RTPP TR
Return of Pointer Value Outside of EXpected RaNQE..........cccoiiiuiiiiieeiiiiiiiee et
Use Of Size0f() 0N @ POINET TYPE...cciiiiiiiie ettt e e e e e e et e e e e s saraeeae e
INCOITECt POINTET SCAIING.......uttiiiie ettt e e e e s e e s et a e e e e e st be e e e e e seatbaeeaeaanes
Use of Pointer Subtraction to Determing SiZe.........cccoiiuiiiiiiiiiiiiie e
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)
Modification of Assumed-Immutable Data (MAID).........cccuiiiieiiiiiiie e e
External Control of Assumed-Immutable Web Parameter
PHP External Variable MOdIfiCatioN............couiuiiiiiiieiiie et
Use of Function with Inconsistent IMplementations.ccc.evieeiiiiiiee e
Undefined Behavior for Input to API
N[O] oY = gl D= = (T (=T o] SRR
Use Of ODSOIEtE FUNCHONS.uuiiiiiiii ettt st e
Missing Default Case in SWitCh StatemeNt............cooiiiiiiiie i
Unsafe Function Call from a Signal Handler..............ccoiiiiiiiiiiiiic e
USE Of INCOITECE OPEIALION. ... utiieiiiie ettt ettt ettt ettt e st e et e e sat e e snbeeeebbeeesnteaesnneee s
Assigning instead of Comparing
Comparing instead of Assigning

CWE Version 1.8.1
Table of Contents

CWE-483:
CWE-484:
CWE-485:
CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-490:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-503:
CWE-504:
CWE-505:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-513:
CWE-514:
CWE-515:
CWE-516:
CWE-517:
CWE-518:
CWE-519:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-533:
CWE-534:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-542:
CWE-543:

Incorrect BIOCK DelMIAtION........ccuuiiiiiiiiiiiee et e et e e snbee e e
Omitted Break Statement in SWILCH.........coiiiiiiii e e
INSUfICIENt ENCAPSUIALION.oiiii it e et e e e s st e e e e e e eaaaees
Comparison of Classes DY NAME.........coiiiiiiiiii e re e e e e
Reliance on Package-level Scope....
Data Leak Between Sessions.............
(0= (o) V=T T o 10 o [@ Lo [T O PRSP
MODIIE COUE ISSUBS......eeiiiiiiiiitiee ittt ettt et e et e e st e e s be e e e nbbeeesabeeesnree s
Public cloneable() Method Without Final (‘Object Hijack').........cccccoviiiieieciiiiiiiee e 587
Use of Inner Class Containing Sensitive Data.............ccciviieeiiiiiiiii et 588
Critical Public Variable Without Final MOIfier.............ccoiuiiiiiiiii e 594
Download of Code Without Integrity ChecK...........ccoiiiiiiiiiiiie e 595
Private Array-Typed Field Returned From A Public Method............ccccveeiiiiiiiiie e 598
Public Data Assigned to Private Array-Typed Field...........ccoveiiiiiiiiiie e 598
Exposure of System Data to an Unauthorized Control Sphere..........cccccooviiieiieiiiiiiieee e 599
Information Leak through Class ClONING............coiiiiiiiiiiiiiieee e e e 601
Serializable Class Containing SeNnSitive Data............coociiiiiieiiiiiiie e 602
Public Static Field Not Marked FiNal.............cccooiiiiiiii e
Trust BoOUNAAry ViIOIAtION.coiiiiiiiieiiiiieiee et ee e e et e e st e e e e e et e e e e s et e e e e e s snraaeeaeas
Deserialization of UNruSted Data.........c.eeeiueieiiiiieiiie ettt
Byte/Object Code
Y ToX i)Y Z= Vi o] oA a1 (=] o S PO PP PRI
Intentionally INtroduced WEAKNESS..........coiiiiiiiiiii et a e e s sarae e e e
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ettt e ettt e et e e e snte e e naneas
B o)=L I [0 €T PP PRPRP
Non-Replicating MaliCioUS COUE...........coiiiiiiiiiii it e s e e e s e e e e e saaees
Replicating Malicious Code (Virus or Worm)
TraPAOONuiiii et

LOGIC/TIME BOMDttt e e e et e e e e et e e e e e eatb e e e e e e sesbbeeeeesansaeseeaeeananres

Covert Storage ChanNel...........ooi oo e e e e e st a e e e eaaeees
DEPRECATED (Duplicate): Covert Timing Channel............ccccoceeiiiiiiiiiiic e 613
Other Intentional, NONMAaliCIOUS WEAKNESS..........ccuuiiiiiiiiiii ettt 613
Inadvertently Introduced WEAKNESS...........coiiiiiiiiiiii et e e e et 614
NET ENVIFONMENT ISSUES......eiiiiiieiiiiie ettt ee sttt ettt ettt e sttt e e snb e e sttt e e sabeeesnbeeesneeeenanes 614
.NET Misconfiguration: Use of IMPersoNation...............cciiiuiiieeiiiiiiiee s ciiies e e sssveee e e e s sinveee e e e s 614
Weak PasswWord REQUIFEIMENTS.cciiiiiiiee ettt ee e ettt e st e e st e e e e st e e e e s st e e e e e s senrraeaaeas
Insufficiently Protected Credentials.........

Unprotected Transport of Credentials
Information Leak Through Caching..........cccoiiiiiiiiiiiiiiiis e e e e e
Information Leak Through Browser Caching..........ccccuviieiiiiiiiiiie i
Information Leak Through Environmental Variables.............ccoovviiiiiiiiiiici e
Exposure of CVS Repository to an Unauthorized Control Sphere.........ccccceeeviviieeeeeiiiiiecee e,
Exposure of Core Dump File to an Unauthorized Control Sphere.........ccoccceeiiiiiiiie i,
Exposure of Access Control List Files to an Unauthorized Control Sphere
Exposure of Backup File to an Unauthorized Control Sphere..........cccoovviieiiiiiiiieee e
Information Leak Through Test COde..........cccuvviieiiiiiiiiee e
Information Leak Through Log Files
Information Leak Through Server Log FileS.........cooiiiiiiiiiiic et
Information Leak Through Debug Log FileS.........cooiiiiiiiiiiie e
Information Leak Through Shell Error MESSAQE........uueieiiiiiiiieiiiiiiiie e e seiiete e e esiree e sivee e e
Information Leak Through Servlet Runtime Error MESSAQE.........ceveeviivviiieeiiiiiieieeeeeiirieeeeeeiveens
Information Leak Through Java Runtime Error MESSAQe..........ccovuuririeeiiiiiiiieeeiiiiiiee e e esiireea e e
File and Directory INformation EXPOSUIE.........ccoiiuiiiiieiiiiiiiee ettt et e e
Information Leak Through Persistent COOKIES...........ccciiiuiiieieiiiiiiiie et
Information Leak Through SoUrce COde............ccoiiiiiiiiiiiiiiiiie et e e
Information Leak Through Include Source Code.........ccooiiiiiiiiiiiiiiiie e
Information Leak Through Cleanup LOg FleS.........cooiiiiiiiiiiiic e
Use of Singleton Pattern in a Non-thread-safe Manner

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.8.1
Table of Contents

CWE-544:
CWE-545:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-557:
CWE-558:
CWE-559:
CWE-560:
CWE-561.:
CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-569:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-592:
CWE-593:
CWE-594:
CWE-595:
CWE-596:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-604:

Failure to Use a Standardized Error Handling Mechanism
Use of Dynamic Class Loading........cccccoeevvveeeeeiiiiiieiee i,

SUSPICIOUS COMIMENL....eiiiiiiiiiiiie e e ettt e e e ettt e e e e e st e e e e e et e e e e e e e aatbeeeeesstbaeeeeesassnseeeeessantbneeaesaanes
Use of Hard-coded, Security-relevant CoNStantS............cccouiiiiieiieiiiiiiiiee et
Information Leak Through Directory Listing
Missing Password Field Masking.............cccovveeeiiiiiiieneenn,
Information Leak Through Server Error Message
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization.................c...c....... 635
Files or Directories Accessible to External Parties...........ccoco i 635
Command Shell in Externally Accessible Directory
ASP.NET Misconfiguration: Not Using Input Validation Framework.............ccccceeviiverieeiiivieeeee e, 637
J2EE Misconfiguration: Plaintext Password in Configuration File............cccccoooiiiiiiee e 637
ASP.NET Misconfiguration: Use of Identity Impersonation
CONCUITEINCY ISSUEBS... . ututitiiittietetttttttteaeeaeeaaeetsassssasasaaasebebeaeseeeeretetaeaaaaaaaeaeesesssssasanassssssnsnensnnnnnnnns
Use of getlogin() in Multithreaded AppliCatioN.............ccoiiiiiiie i
Often Misused: Arguments and Parameters...........coiciiiieiiiiiiiii e streee e
Use of umask() with chmod-style Argument...................
[D1=T To [oo =TSP OPRP
Return of Stack Variable AQAreSS........c..uiiiiii it
UNUSEA VANADIE.......oeiiiii ettt ettt rn e e s e e e nbb e e e snte e e snnes
SQL Injection: Hibernate
Reliance on Cookies without Validation and Integrity Checking...........ccccccovvivieieeiiiiiiiee e, 644
Access Control Bypass Through User-Controlled SQL Primary Key........ccccceeovvvviieeeiiiiiiieee e 645
Unsynchronized Access t0 Shared Data.........cc.veeiiiiiiiiiiie it
finalize() Method Without SUper.finalize()...........ccciuuiiieiiiiiiiie e
EXPIESSION [SSUEBS......cciiiiiie e ettt e et e e et e e e e e et e e e e e et b e e e e e e saabaaeeeeseasaaaeeeesasnssaeaaeaans
EXPression is AIWaYS FalSE...........cciiiiiiiiii ettt e e e e e et e e e s eaaae e e e e
EXPresSion iS AIWAYS TIUE.......uuiiiiiiiiiieie e e ittt e e e ettt e e e e et e e e s st e e e e e setbaeeeesessataeeeeesssbaeeeesaanses

Call to Thread run() instead Of STAM().......ccoviviiiee it e e e
Failure to FOIlOW SPECIfICAtION.........uiiiiiiiiiiic e e

EJB Bad Practices: Use of Synchronization Primitives...........c.ccccvveiieiiiiiiiiec e

EJB Bad Practices: Use Of AWT SWINQ.....ccuuiiiiiiiiiiiiee et e e ssstte e e s s sivee e e e s ssiasae e e e s ssanaaeaeeeannens

EJB Bad Practices: Use Of Java /O........c.uoiiiiiiiiiiiiiee ettt

EJB Bad Practices: UsSe Of SOCKELS.........iiiiuiiiiiiiiiii e

EJB Bad Practices: Use Of Class LOAUET.........ccoiuiiiiiiiiiiiee ettt
J2EE Bad Practices: Non-serializable Object Stored in SeSSiON..........cccceeeeviiiiieeee e
clone() Method Without SUPEr.CIONE().......ccccuriiiie it e e ee e e e enees
Object Model Violation: Just One of Equals and Hashcode Defined
Array Declared Public, Final, and Static

finalize() Method Declared Public..............c...cuee.

Return Inside FiNally BIOCK...........ooiiiiiiiiiiici ettt e e e e e e e e e
Empty SyNnchronized BIOCK...........cooiiiiiiiii et e e et a e e
EXPIiCit Call 10 FINAIZE(). ... cuveieee ettt e e et e e e e et e e e e s st be e e e e e eennnns
Assignment of a Fixed Address t0 @ POINTEN............ocoiiiiiiiie e
Attempt to Access Child of a NON-Structure POINLEN...........cooiiiiiiiiiiiiiiiiee e
Call to NON-UBIQUITOUS APL.....ciiieieee ettt e e st e e e e s e e e e e e s eatbaeeae s
Free of Memory NOt 0N the HEAP........coi i e
Sensitive Data Storage in Improperly Locked MemOry..........cooovviiiieiiiiiiiee e
AULhentiCation BYPASS ISSUES......cccciiuiiiii ettt e et e e et e e e e e e e e s satae e e e e s etbaeeeaeaaans
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
J2EE Framework: Saving Unserializable Objects t0 DisSK..........cccccovcvieiieiiiiiiiee e
Comparison of Object References Instead of Object Contents...........cccceccvveeeieiiiiiieree e
Incorrect Semantic ObJECt COMPATNISON........cccuviiiii e ittt e e e s e e e e e et eaae e
Use of Wrong Operator in String COMPAriSON..........uuiiiiiiiiiieeeeeeiiieee e e s et e e e esiaaee e e e e sinsreeeeessanns
Information Leak Through Query Strings in GET REQUESL.........ccccoiiiiiiiiieiiiiiieee e
Trust of OpenSSL Certificate Without Validation.............cccoooiieiiiiiiiiiiec e
Failure to Catch All EXCEPLIONS iN SEIVIETc.evviiiiiiiiie et
URL Redirection to Untrusted Site ('Open RedireCt)).......ccccooviiiiiieiiiiiiiee e
Client-Side Enforcement of Server-Side SECUNLY.........c.uviiiiiiiiiiiee e
Use of Client-Side AUTNENTICALION.ccuuiiiiiii e
[DT=T o] f=Tor= 1 (=To B = 0 1 =TT PO PRRRROPPPPRN

Xii

CWE Version 1.8.1
Table of Contents

CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:
CWE-628:
CWE-629:
CWE-630:
CWE-631.:
CWE-632:
CWE-633:
CWE-634:
CWE-635:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-658:
CWE-659:
CWE-660:
CWE-661.:
CWE-662:
CWE-663:
CWE-664:

CWE-665

Multiple Binds t0 the SAmME POrt...........oiiiiiieiie et e e
Unchecked Input for LOOP CONITION.........cciuuiiiiiiiiiiiir et eee e e e e e e e e e s saaae e e e e eaees
Public Static Final Field References Mutable ObjecCt............cccooiiiiiiiii i
Struts: Non-private Field in ACONFOIM CIaSsS.........cccuviiieiiiiiiiiee e a e
Double-ChecKed LOCKING........ciiuiiiiee ittt e e e e et e e e s e e e e e e e saab e e e e s sntbeeeaeaan
Externally Controlled Reference to a Resource in Another Sphere
Information Leak Through XML External Entity File DiSCIOSUIE...........ccceveeiiiiiiiee e
Information Leak Through Indexing of Private Data...........ccccoecuvevieeiiiiiiiee e
INSUFfiCIENt SESSION EXPIFTALION.ccciiiiiiieeeiiiiiiee e e e st e s e e e s e e e e e s saar e e e e e sabaeeeeesetbaneaeseanes
Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
Information Leak Through COMMENTS..........coiiiiiiiiiiiie et
Incomplete Identification of Uploaded File Variables (PHP)..........cccccoviiiiie i
Reachable Assertion
Exposed Unsafe ACtIVEX METhOU..........ooooiiiiiiii e
Dangling Database Cursor ('CUursor INJECHION").........coiiiiiiii e
Unverified Password ChanQe.........ciiiiiuiiiii it e e e et e e e e e e saraeaaeeaas
Variable EXIFACHON ETOr........oi ittt et e e st e st e e e e e st e e nnes
Unvalidated FUNCtion HOOK ArQUMENTS........cciiiiiiiiiiee it ee e e ettt ee e e st e et e e e e e e e e e e e e snsaaeeas
Unsafe ActiveX Control Marked Safe FOr SCHPHNG........ccoovviiiieiiiiiiiee e
Executable Regular EXPreSSION EFTOT..........ccciiiiiiiiiie ittt e e e e e sarae e e e e s eavaee s
Permissive ReQUIAI EXPIrESSION......cccciiiiiiii e ieiiteee e e cetiae e e e s et e e e s et e e e e s e e bbr e e e e e e saabaeeeessansbaeeaeaan
Null Byte Interaction Error (PoiSON NUIl BYE).........cvieiiiiiiiiei it
Dynamic Variable EValUAtiON.............cooiiiiiiiiiiiiiiiee ettt e et e e e e sararea s
Function Call with Incorrectly Specified ArgUMENTES...........ccvviiieiiiiiiiee e
Weaknesses in OWASP TOP TN (2007).....cccciiiuiieee ettt e et e e a e e s satre e e e e e savaee s
Weaknesses EXamined DY SAMATEooi ittt e e e e e straeea e
RES0OUICE-SPECIfIC WEAKNESSES.c..iiieiie ettt e e e et e e e e s st e e e e e s etbaeeaeseaes
Weaknesses that Affect Files or Directories
Weaknesses that AffECt MEIMOTY........coiiiiiiie et e e e e e e e eataee s
Weaknesses that Affect System Processes
Weaknesses USEd DY NVD..........ooiiiiiiiiiie ettt e e e e et e e e e e et a e e e e e sntaeaaaeaan
Not Failing Securely ('"Failing OPEN")......ccoiiiiiiie et
Failure to Use Economy Of MECNANISM..........ccoiiiiiiiie ittt e e
Failure to Use Complete MEIAtioN..........ccciuiiiiieiiiiiiie et e e et e e e e e e e s are e e e e s sataeeeaeaenees
Access Control Bypass Through User-Controlled Key..........ccccvveeenn.

Weak Password Recovery Mechanism for Forgotten Password
Insufficient Filtering of File and Other Resource Names for Executable Content.......................... 717
External Control of Critical State Dat@.........cc.coiieeeiiiiiiiiiie e
Improper Neutralization of Data within XPath Expressions (‘XPath injection’)
Improper Neutralization of HTTP Headers for Scripting SyntaX........ccccveeeiviiviiieeiiiiiiiieee e
Overly Restrictive Account LOCKOUt MEChaNISM..........cccoiiiiiiiiieiiiiiis e e e e
Reliance on File Name or Extension of Externally-Supplied File.............ccccoiieeiiiiiiiee e,
Use of Non-Canonical URL Paths for Authorization Decisions
INcorrect Use Of PriVIIEged APIS........co ittt e e e e earree s
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 728
Trusting HTTP Permission Methods on the Server Side...........ccoccvviieiiiiiiiie e 730
Information Leak through WSDL Fil€.......c.ccoiiiiiiiiiiiiiee et a e 731
Improper Neutralization of Data within XQuery Expressions ("XQuery Injection’)............cccceeeeenns 732
Insufficient CompartmMeNntaliZatioN..............cooiiiiiiie i e a e 733
Reliance on a Single Factor in @ Security DeCISION..........c..ceiiiiiiiiiie e 734
Insufficient Psychological ACCeptability...........ccovviiiiiiiiiiiie e 736
Reliance on Security through OBSCUIILY........ciiiiiiiiiiie e 737
Violation of Secure Design PriNCIPIES.........oooo i 738
Weaknesses in Software WHLEN N C......oouiiiiiiiiiee et 739
Weaknesses in Software WIHEEN iN CH...oouiiiiiieiiiee et 741
Weaknesses in Software WIEEN IN JAVA..........coiiueiiiiiie ettt sieee e s e et 743
Weaknesses in Software Wtten iN PHP.........ocuiiiiiiii e 745
INSUFfiCIENt SYNCHIONIZALION.ciiiiiiiie e e e e e e e st e e e e s earaee s 745
Use of a Non-reentrant Function in an Unsynchronized Context..............ccccvvveeeiiiiiiieeeeeeiiiieneeene 746
Improper Control of a Resource Through its Lifetime.........cccvvieiiiiiiiiec e 747
S IMPrOPEr INIALIZATION.eii i e e e e e s e e e e e e e saa e e e e e s s satbaraeeeaanes 748

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.8.1
Table of Contents

CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-677:
CWE-678:
CWE-679:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-699:
CWE-700:
CWE-701.:
CWE-702:
CWE-703:
CWE-704:
CWE-705:
CWE-706:
CWE-707:
CWE-708:
CWE-709:
CWE-710:
CWE-711:
CWE-712:
CWE-713:
CWE-714:
CWE-715:
CWE-716:
CWE-717:
CWE-718:
CWE-719:
CWE-720:
CWE-721.:
CWE-722:
CWE-723:
CWE-724:
CWE-725:
CWE-726:

Operation on Resource in Wrong Phase of Lifetime..........cccvviiiiiiiiiiie e 751
[aIS 01 (ol [=T a1 O o Yol (] T SRS PR 752
Exposure of Resource t0 Wrong SPhEIE........ccocuuiiiii ittt 753
Incorrect Resource Transfer BEtWeeN SPNEreS........c.cioiuiiiiiiiiiiiie e 754
Always-Incorrect Control FIow Implementation...............eeeeoiiiiieee e 755
Lack of Administrator CONrol OVEr SECUNLY........cciiiiiiieeeeciiiiee e e e et eere e et e e e s eaaee e e e 755
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiieiiiiiiieee e 756
External Influence of Sphere Definition............coooiiiiiii i 757
UNCONLIONEA RECUISION.ciiitiiiiiiie ittt ettt ettt ettt e e bt e e sebe e e entb e e s nnteeesnbeeeabbeeeans 758
Duplicate Operations 0N RESOUICE.cciiiuiiieeiiiiireee e e e siire e e e e s s e e e s s abaeeaeessataeeeeessnrbaeeeeeaann 759
Use of Potentially Dangerous FUNCHON............cooiiiiiiii e 760
WeEaKNess Base EIBMENLS........coiiuiiiiiiie ettt sttt s e e snnee s 761
(010] 1] 001 1= 1 J PSP RTRROPPRPRN 767
CRAIN EIBIMENTS.ciiiiiiii ittt sttt e et b e e et et e e ebe e e e snbe e e ettt e e nnteeesnneee s 768
Integer Overflow to BUffer OVEIMIOW..........ccooiiiiiiiiiccce e 770
Incorrect Conversion between NUMEIC TYPES......cciuiiiie i it e e ettt e e s et e e e e e srre e e e e sstveeeaesaaes 770
[oo]q (=To1 Q@2 110 - L1 o] o FO PP TRPPR 771
Function Call With Incorrect Order of ArgUMENTS.........ccuviiiiiiiiiiiie e 775
Failure to Provide Specified FUNCHONAIILY...........coociuiiiieiiiiiiee e e 775
Function Call With Incorrect Number of ArgUMENTS..........cooiiiiiiiiiiiiiiie e 776
Function Call With INCOrrect ArgUmMENT TYPE....uuiiiieiiiieiie e ettt e e st e s et e e e s e e e e e e satraeaa e 777
Function Call With Incorrectly Specified Argument Value...........ccccocoovviiiiiei i 777
Function Call With Incorrect Variable or Reference as Argument...........cccoeevuvveeeeeiiiiieeeeeeeciiieenn. 778
Permission Race Condition During Resource Copy

Unchecked Return Value to NULL Pointer Dereference.........ccceuvvviiiiiieiiiiee i 780
Insufficient Control FIOW Management............ueiieiiiiiiiiie et e e e e e e e e e st e e e e e aaees
Incomplete Blacklist to Cross-Site Scripting

Protection Mechanism Failure............cccccoviiiniiiiiieeeniieee

Use of Multiple Resources with Duplicate Identifier

Use of LOW-Level FUNCHONAITY.........cooiuiiiiiiiiec et e et e e e etbaeea e
INCOITECE BENAVIOT OFUENeiiiiiiieiiiie ettt ettt et e st e s eat e e snb e e snee e e nanes
Insufficient Comparison

REAITECE WItNOUL EXIt.....eeiiiiiiiiieeiiie ettt sttt e e st e e st e e e nnteeesnbeee s
(DAt o] o] 0g 1T o A O] g o= o] £ PP
Seven Pernicious KINGOOMIS.oiiiiiiie ittt e e s et e e e e et e e e e e st e e e e e e s snnaeeeeeaannaes
Weaknesses Introduced DUNNG DeSIGN.........ciiiiiiiiiiiii ittt e e s e saaae e e e nnnes
Weaknesses Introduced During IMplementation..............ccieiiiiieieeeiiiiiiee e
Failure to Handle Exceptional Conditions

Incorrect Type Conversion or Cast..............

Incorrect Control FIOW SCOPING......uuiiiiiiiiiiii ettt e e e e s e e e e e e st e e e e s eearaees

Use of Incorrectly-Resolved Name or REfErenCe.........cvvvvieiiiiiiiic e
Improper Enforcement of Message or Data StruCIUIe..........cccuvvveeeiiiiiiie e 812
INncorrect OWNErShip ASSIGNIMENL........ciuiiiii e e e c e e s e e e e et e e e e e sarreeeeeaan 813
N E= T [=To IO o= T LT PR PRI 814
Coding Standards ViIolatioN...........c.uuiiiiiiiiiiee e e e e e e e e e e et e e e e e s eaaree s 814
Weaknesses in OWASP TOP TN (2004).......ccoiiuiiiieeieiiieee ettt s et a e satre e e e s savaeeas 814
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS).....ccccceevviiiieee e 816
OWASP Top Ten 2007 Category A2 - INJection FIAWS...........cccuieiieiiiiiiii e 816
OWASP Top Ten 2007 Category A3 - Malicious File EXECULiON..........ccceeeeiiiiieee e, 817
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference...........cccevveveeiiiineneenn. 817
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)........coocviveeiiiiinnen.n. 817
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling........... 818
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management............ 818
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage............ccvveveeeiiiivrereeninnnns 819
OWASP Top Ten 2007 Category A9 - Insecure COMMUNICALIONS.........c.eeeeeeiiiiieeeeesiiiiee e e e 819
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS.......ccccevvvvvereeeiiiiiinreaennnns 819
OWASP Top Ten 2004 Category Al - Unvalidated INPUL..........ccccvereeiiiiiieiee e 820
OWASP Top Ten 2004 Category A2 - Broken Access CONrol..........ccccvveveeeiiiiiieeeeeiiiieeee e 821
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management............ 821
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) FIaws..........ccccceveeiiiiiineeeiens 822
OWASP Top Ten 2004 Category A5 - Buffer OVerflows...........cccccoeeiiciiiiei i 822

Xiv

CWE Version 1.8.1
Table of Contents

CWE-727:
CWE-728:
CWE-729:
CWE-730:
CWE-731:
CWE-732:
CWE-733:
CWE-734:
CWE-735:
CWE-736:
CWE-737:
CWE-738:
CWE-739:
CWE-740:
CWE-741.:
CWE-742:
CWE-743:
CWE-744:
CWE-745:
CWE-746:
CWE-747:
CWE-748:
CWE-749:
CWE-750:
CWE-751.:
CWE-752:
CWE-753:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-769:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:
CWE-786:
CWE-787:

OWASP Top Ten 2004 Category A6 - INJection FIAWS...........cccoueeiieiiiiiiiic e 823
OWASP Top Ten 2004 Category A7 - Improper Error Handling..........cccceoovviiieeeciiiciiicc e, 823
OWASP Top Ten 2004 Category A8 - INSECUIe StOMaQe........cuuveeeeeeeieieiiieieiiiiinirirererereeeeeeaeaaeeas 824
OWASP Top Ten 2004 Category A9 - Denial of SErVICe.........ccoiiiiiiiiiiiiiiiie e 824
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management................c.cccuveeen.. 825
Incorrect Permission Assignment for Critical RESOUICE.ccvviieeiiiiiiiiee e 825
Compiler Optimization Removal or Modification of Security-critical Code............ccccccecvvereeeiinnen. 830
Weaknesses Addressed by the CERT C Secure Coding Standard............ccccceeeviiiiieeieiiiiieneeen, 831
CERT C Secure Coding Section 01 - Preprocessor (PRE)........cccccoovviiieeie i 832
CERT C Secure Coding Section 02 - Declarations and Initialization (DCL).........cccccccccvveveeeeinnen. 833
CERT C Secure Coding Section 03 - EXPressions (EXP).......cccovveiieiiiiieiee e 833
CERT C Secure Coding Section 04 - INtegers (INT)......cooiiiiiiieeiiiiiiie e e e 833
CERT C Secure Coding Section 05 - Floating Point (FLP).........ccoiiiiiiiieiiiiiiiee e 834
CERT C Secure Coding Section 06 - Arrays (ARR)........ccuiiie i 834
CERT C Secure Coding Section 07 - Characters and Strings (STR)......cccceevivivieee e 835
CERT C Secure Coding Section 08 - Memory Management (MEM)

CERT C Secure Coding Section 09 - Input Output (FIO).........ccoiiiiiiiiieiiiiiiee e
CERT C Secure Coding Section 10 - Environment (ENV)........ccooviieiiiiiiieee e
CERT C Secure Coding Section 11 - Signals (SIG)......ccccuiiieiiiiiiiiee e
CERT C Secure Coding Section 12 - Error Handling (ERR)..........ccooiviiiieeiiiiiieee e
CERT C Secure Coding Section 49 - Miscellaneous (MSC)

CERT C Secure Coding Section 50 - POSIX (POS).....cccuiiiiiiiiiieie ettt
Exposed Dangerous Method OF FUNCHON............oiiiiiiiiiiic e
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 841
2009 Top 25 - Insecure Interaction Between COMPONENES..........ccoviviiiieiiiiiiieeeecciiiee e esiveee e 842
2009 Top 25 - Risky Resource Management...........cccoiiuuieieeiiiiiieiee e s eeiieree e s e e e e e s sstree e e s eavaee s 842
2009 TOP 25 - POrOUS DEENSES........oviiiiiieiciit ettt e e e s e e s e eaaaraaeeaans 843
Improper Check for Unusual or Exceptional Conditions............cccooivvieiiiiiiiieiee e 843
Improper Handling of Exceptional ConditioNS............c.ooiiiiiiiiiiiiiei e 849
MiSSING CUSIOM EITOr PAgE.......c.uviiiiiieiiiiiii ettt et e e e et e e e e et e e e e e et a e e e e e e anntaeeeas 849
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')...........cccceeeene. 850
Reliance on Undefined, Unspecified, or Implementation-Defined Behavior...............cccceeeevnnneee.. 851
Use of a One-Way Hash WithOUt @ Sall...........cc.eviiiiiiiiiiii e 851
Use of a One-Way Hash with a Predictable Salt...............ccooiiiiiiiii e 852
Free of Pointer not at Start Of BUfEr..........oooiiiiiiii e 852
Mismatched Memory Management ROULINES.occuviiieiiiiiiiiee et arae e 855
Release of Invalid Pointer or REfEIENCE.ccoiuiiiiiiiiiie e 856
Multiple LOCKS Of @ CritiCal RESOUICE.......ccciuiiiiie ettt eee et e e e et e e e e e e rataeeaaeeenes 857
Multiple Unlocks of @ CritiCal RESOUICE...........eiiiiiiiiiiiie ettt e stree e e e 858
Critical Variable Declared PUDIIC...........cc.ooiiiiiiiiii e 859
Access to Critical Private Variable via Public Method.............ccocoiiiiiiiiiiieeec e, 861
Incorrect Short CirCuit EVAIULION.cccuviiiiiiieiiiee et aree e e e e 862
File Descriptor Exhaustion 863
Allocation of Resources Without Limits or Throtthing..........ccccccvveiiiiiiiiiiie e 864
Missing Reference to Active Allocated RESOUICE............ccoviuiiiieiiiiiiieee et a e 869
Missing Release of Resource after Effective Lifetime..........cocceeeiiiiiiiee e 870
Missing Reference to Active File Descriptor or Handle.............ccccooiiiiiiie i 872
Allocation of File Descriptors or Handles Without Limits or Throttling............ccccceeeiviiiiineeeninnen. 873
Missing Release of File Descriptor or Handle after Effective Lifetime...........c.ccocovveiiiiiiieniccins 873
Unrestricted Recursive Entity References in DTDs (‘XML Bomb')........ccccooviiiiiieiiiiinee e, 874
Regular EXpression WithOUL ANCROTS.cccuiiiii ettt e e e e saaae e e e eaees 876
[a IS 017 ol =T a1 A aTe o |1 o TSRO PPR 877
LOQQiNg Of EXCESSIVE Dalal.........uviiiiiiiiiiiie ettt e st e e e e e e e s et e e e e e e snareeaeeaan 878
Use of RSA Algorithm WithOUt OAEP.............ooiiiiiiii e 879
Improper Address Validation in IOCTL with METHOD_NEITHER 1/O Control Code..................... 881
Exposed IOCTL with Insufficient ACCESS CONLIOL..........ccoiiiuiiiiiiiiiiiiee e 882
Operator Precedence LOGIC EITOr.......ciiuiiiiii ettt e et e e e e e e e e earree s 883
Reliance on Cookies without Validation and Integrity Checking in a Security Decision................. 884
Use of Path Manipulation Function without Maximum-sized Buffer..............cccocoviieiiiiiinee e, 887
Access of Memory Location Before Start of BUfer..........cccooiieiiiiiiiiicc e 888
OUL-Of-DOUNAS VIOt st ettt e e seb e e et e e rateeesnneeas 888

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.8.1
Table of Contents

CWE-788: Access of Memory Location After End of BUffer.........ccuviiiiiiiiiii e 889
CWE-789: Uncontrolled Memory AllOCALION..........uuiiieiiiiiiiee e st ee ettt e e e et e e e s et e e e e e s e e e e e s stbaeeeesanaes 889
CWE-790: Improper Filtering of Special EIEMENTS...........ccoiiiiiiiiiiiiie e 891
CWE-791: Incomplete Filtering of Special EIEMENTS............ooiiiiiiiiiie e 892
CWE-792: Incomplete Filtering of One or More Instances of Special Elements..............cccocovieieiiiiiieneeciins 893
CWE-793: Only Filtering One Instance of a Special EIemMeNt............ccccoiiiiiiiii i 893
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements.............ccccoeviiiiiiiiiieic e 894
CWE-795: Only Filtering Special Elements at a Specified LOCation.............coooviiieiiiiiiieec e, 895
CWE-796: Only Filtering Special Elements Relative t0 @ Marker............ccccooiiiiiiiie i 896
CWE-797: Only Filtering Special Elements at an Absolute POSItioN.............cccoccvvveee i 896
CWE-798: Use of Hard-coded CredentialS.ocuuii ittt e et s s 897
CWE-799: Improper Control of INteraction FrEQUENCY.........cciiiuviiiieeiiiiiiee e et e s e e e st e e e e e ssabree e e e e eees 900
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 902
CWE-801: 2010 Top 25 - Insecure Interaction Between COMPONENES.........ccvvvieeeiiiiiiieeeiiiirieeeseeiireeeeessnnns 903
CWE-802: 2010 Top 25 - Risky ReSOUIrce ManagemeENt...........cccuuriieeeiiiiiiireeeiiiieeeeesssireeeeesssnrreseessnsveeeaeaan 903
CWE-803: 2010 TOpP 25 - POroUS DEFENSES........oviiiiiiiiiiiiii ettt e e e e et e e e e s searaeeaeeaans 904
CWE-804: GUESSADIE CAPTCHA.ottt ettt st et e e bt e e sbe e e e bb e e e snbeeesnneeeennbeeenns 904
CWE-805: Buffer Access with Incorrect Length ValUe............cooooiiiiiiiiiiiiiiiiie e 905
CWE-806: Buffer Access Using Size of SOUrce BUFfEr..........ccuviiiiiiiiiiiic et 908
CWE-807: Reliance on Untrusted Inputs in a Security DeCISION...........ccociiiiiiiiiiiiiiice e 909
CWE-808: 2010 Top 25 - Weaknesses ON the CUSP........uiiiiiiiiiiiii ettt e et e e e st e e e e eiaaeeeeeeaaes 912
CWE-1000: RESEAICH CONCEPLS. . uuiiiiiiiiiiiii e e ittt e e ettt e e e e et e e e e s st e e e e e s e tb e e e e e e s aatbeeaeessabaeeeessantaaeeeesaasneees 913
CWE-2000: Comprehensive CWE DICHONAIY.........c..uuiiiiiiiieeee ettt e e eeiee e e e e et e e e e s stare e e e s s saaaeeseessnsreraaeaan 914
Appendix A: Graph Views

CWE-629: Weaknesses in OWASP TOP TN (2007)......uuuieeiiiiiiiieeeeiiiiee e e e eeiteee e e s eeivareaesesnsr e e e e s ssnnreeeeessnees 931
CWE-631: ReSOUICE-SPECITIC WEAKNESSES......ceiiiiiiiiiiie e ittt e e eeititt e e e e e et e e e s st e e e e e s bbb e e e e e aatbeeaeessnnraaeeaean 932
(@Y R4 S H O] 1 4] 0 To]| (=1 PPP ORI 934
CWE-699: DEVEIOPMENT CONCEPLS. . uueiieiiiiiiiie e i ittt e e e eeitt e e e e e et e e e e s st e e e e e setbaseaeeaaatreeaeeassraeeeessantaeeeaesanses 935
CWE-700: Seven Pernicious KiINGOOMIS.ciuiiiiieiiiiiiiee ettt e sttt e e sttt e e e e e et e e e e e s eat e e e e e sensnnneeeesenanees 957
CWE-709: NAMEA CRaAINS.utiieiiiieiiiiee sttt ettt st et e be e e atb e e sbe e e s be e e e asbeeesabeeesnbbeeeanteeesnneeesnnbeeas 959
CWE-711: Weaknesses in OWASP Top TN (2004).......cuueeiiiiiiiie et e e eeieee e e et e e e s e srar e e e e s s saareeaeesenees 960
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard...............cccceveeeviiiieeeeceiiinennn. 963
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 966
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 967
CWE-1000: RESEAICH CONCEPLS. .. uiiiiiiiiiiiiie e e ettt e e ettt e e e e et e e e e s st e e e e e s et b e e e e e e s aataeeeeesssbaeeeessantbaeeeesaasneees 969
GIOSSAIY oo 990
1Yo 1= OO 994

XVi

CWE Version 1.8.1
Symbols Used in CWE

Symbol

YecoemE

Meaning

View

Category
Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite
Compound Element - Named Chain

XVii

3IMD Ul pasn s|oquis

CWE Version 1.8.1
CWE-1: Location

CWE-1: Location

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.
Relationships

Nature Type ID Name Page
ParentOf 2 Environment 699 1
ParentOf 16 Configuration 699 13
ParentOf 17 Code 699 14
MemberOf 699 Development Concepts 699 788

CWE-2: Environment

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 3 Technology-specific Environment Issues 699 1
ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 700 2
ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 3
ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 700 4
ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 5
ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 700 6
Methods
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 700 7
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 8
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 700 9
ParentOf (B] 14 Compiler Removal of Code to Clear Buffers 699 10
700
ParentOf (B] 15 External Control of System or Configuration Setting 699 12
ParentOf [C] 435 Interaction Error 699 529
ParentOf (B) 552 Files or Directories Accessible to External Parties 699 635
ParentOf (V] 650 Trusting HTTP Permission Methods on the Server Side 699 730
MemberOf 700 Seven Pernicious Kingdoms 700 789

CWE-3: Technology-specific Environment Issues

Category ID: 3 (Category) Status: Draft
Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 699 1
ParentOf 4 J2EE Environment Issues 699 2

=

uoIe207 :T-IMD

CWE-4: J2EE Environment Issues

CWE Version 1.8.1
CWE-4: J2EE Environment Issues

Nature Type ID Name Page
ParentOf 519 .NET Environment Issues 699 614

CWE-4: J2EE Environment Issues

Description
Summary
J2EE framework related environment issues with security implications.
Relationships

Nature Type ID Name Page

ChildOf 3 Technology-specific Environment Issues 699 1

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 825
Management

ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 699 2

ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-1D Length 699 3

ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 699 4

ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 699 5

ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 699 6
Methods

ParentOf (V] 555 J2EE Misconfiguration: Plaintext Password in Configuration 699 637
File

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission
Without Encryption

Weakness ID: 5 (Weakness Variant) Status: Draft
Description
Summary
Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.
Time of Introduction
« Implementation
e Operation
Applicable Platforms
Languages
» Java
Potential Mitigations
The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.
Other Notes
If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: - (1) A user manually enters URL and
types "HTTP" rather than "HTTPS". - (2) Attackers intentionally send a user to an insecure URL. -
(3) A programmer erroneously creates a relative link to a page in the application, failing to switch
from HTTP to HTTPS. (This is particularly easy to do when the link moves between public and
secured areas on a web site.)
Relationships

CWE Version 1.8.1
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 319 Cleartext Transmission of Sensitive Information 1000 394

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport
CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Weakness ID: 6 (Weakness Variant) Status: Incomplete
Description

Summary

The J2EE application is configured to use an insufficient session ID length.
Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.
Time of Introduction
* Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Integrity
If an attacker can guess an authenticated user's session identifier, they can take over the user's
session.

Enabling Factors for Exploitation
If attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to
assume that they could attempt tens of thousands of guesses per second. If the web site in
question is large and popular, a high volume of guessing might go unnoticed for some time.
Potential Mitigations
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.
Implementation
A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.
Background Details
Session ID's can be used to identify communicating parties in a web environment.
The expected number of seconds required to guess a valid session identifier is given by the
equation: (2°B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CWE Version 1.8.1
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 334 Small Space of Random Values 1000 414

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction
References

< http://lwww.securiteam.com/securityreviews/5STPOFOUEVQ.html >.

CWE-7: J2EE Misconfiguration: Missing Custom Error
Page

Weakness ID: 7 (Weakness Variant) Status: Incomplete

Description
Summary
The default error page of a web application should not display sensitive information about the
software system.
Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServietException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

CWE Version 1.8.1
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Potential Mitigations
Handle exceptions appropriately in source code.

Always define appropriate error pages.
Do not attempt to process an error or attempt to mask it.

Verify return values are correct and do not supply sensitive information about the system.

Other Notes
When an attacker explores a web site looking for vulnerabilities, the amount of information that
the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's
job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.
This information enables the attacker to target known vulnerabilities in these components.
The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 823
Handling
ChildOf [C] 756 Missing Custom Error Page 699 849
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

CWE-8: J2EE Misconfiguration: Entity Bean Declared

Remote
Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.
Time of Introduction
 Architecture and Design
¢ Implementation
Demonstrative Examples
XML Example: Bad Code

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

ajoway paltejoaq ueag Aug :uonesnBiyuoaSIA IIZC 8-IMD

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE Version 1.8.1
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

</entity>

;./enterprise-beans>
</ejb-jar>

Potential Mitigations
Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that your application logic performs
appropriate validation of any data that might be modified by an attacker.

Other Notes
Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 753

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods

Weakness ID: 9 (Weakness Variant) Status: Draft
Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.
Time of Introduction
« Architecture and Design
¢ Implementation
Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

<Jejb-jar>
Potential Mitigations
Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.
Other Notes

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully

CWE Version 1.8.1
CWE-10: ASP.NET Environment Issues

thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 266 Incorrect Privilege Assignment 1000 333
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 821

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

CWE-10: ASP.NET Environment Issues

Description
Summary
ASP.NET framework/language related environment issues with security implications.
Relationships

Nature Type ID Name Page
ChildOf 519 .NET Environment Issues 699 614
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 825
Management
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 699 7
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 699 8
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 699 9
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 637
Framework
ParentOf (V] 556 ASP.NET Misconfiguration: Use of Identity Impersonation 699 638
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific Insecure Configuration Management
CWE-11: ASP.NET Misconfiguration: Creating Debug
Binary
Description
Summary

Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.
Time of Introduction
¢ Implementation
e Operation
Applicable Platforms
Languages
* .NET
Common Consequences

S9NSS| JuswuoliAug 19N'dSV -0T-aMD

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE Version 1.8.1
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Confidentiality
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.
XML Example: Bad Code
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"

debug="true"
/>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.

Potential Mitigations
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production (See demonstrative example).

Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 215 Information Leak Through Debug Information 1000 286

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary
CWE-12: ASP.NET Misconfiguration: Missing Custom Error
Page
Description

Summary

An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework's built-in responses.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
* .NET
Common Consequences
Confidentiality
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.

CWE Version 1.8.1
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Demonstrative Examples
Example 1:
Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
ASP.NET Example: Bad Code

<customErrors ... mode="0Off" />

Example 2:

Custom error message mode for remote user only. No defaultRedirect error page is specified.

The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET
error message with the server customError configuration setting and the platform version will be
returned.

ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Potential Mitigations
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as shown
in the following example.
Good Code

<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:
Good Code

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

Do not attempt to process an error or attempt to mask it.
Verify return values are correct and do not supply sensitive information about the system.
ASP .NET applications should be configured to use custom error pages instead of the framework
default page.

Background Details
The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf ® 756 Missing Custom Error Page 1000 849

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET _Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in
Configuration File

Weakness ID: 13 (Weakness Variant) Status: Draft

Description

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD

CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 1.8.1
CWE-14: Compiler Removal of Code to Clear Buffers

Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.
Time of Introduction
 Architecture and Design
« Implementation
Demonstrative Examples
The following connectionString has clear text credentials.
XML Example: Bad Code
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"

providerName="System.Data.Odbc" />
</connectionStrings>

Potential Mitigations
Good password management guidelines require that a password never be stored in plaintext.
Implementation
credentials stored in configuration files should be encrypted.
Implementation
Use standard APIs and industry accepted algorithms to encrypt the credentials stored in
configuration files.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 260 Password in Configuration File 1000 327

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.
Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."
Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.
Time of Introduction
¢ Implementation
¢ Build and Compilation

10

CWE Version 1.8.1
CWE-14: Compiler Removal of Code to Clear Buffers

Applicable Platforms
Languages
« C
o C++
Detection Methods
Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.
White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.
Demonstrative Examples
The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().
C Example: Bad Code
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {

if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value
is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the
correct region of memory, they may use the recovered password to gain control of the system.
It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core
dump or runtime mechanism to access the memory used by a particular application and recover
the secret information. Once an attacker has access to the secret information, it is relatively
straightforward to further exploit the system and possibly compromise other resources with which
the application interacts.
Potential Mitigations

Implementation

Store the sensitive data in a "volatile" memory location if available.
Build and Compilation

If possible, configure your compiler so that it does not remove dead stores.
Architecture and Design

Where possible, encrypt sensitive data that are used by a software system.

Relationships

11

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE-15: External Control of System or Configuration Setting

CWE Version 1.8.1
CWE-15: External Control of System or Configuration Setting

Nature Type ID Name Page
ChildOf 2 Environment 699 1
700
ChildOf 503 Byte/Object Code 699 606
ChildOf 633 Weaknesses that Affect Memory 631 707
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 824
ChildOf (B] 733 Compiler Optimization Removal or Modification of Security- 1000 830
critical Code
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 838
Affected Resources
* Memory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization
PLOVER Sensitive memory uncleared by compiler
optimization
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSCO06-C Be aware of compiler optimization when
dealing with sensitive data
References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "A Compiler Optimization
Caveat" Page 322. 2nd Edition. Microsoft. 2002.

Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >.

< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/
secure10102002.asp >.

Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security". Bugtrag.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration

Setting
Description
Summary

One or more system settings or configuration elements can be externally controlled by a user.
Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.
Time of Introduction
¢ Implementation
Modes of Introduction
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.
Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

sethostid(argv[1]);

12

CWE Version 1.8.1
CWE-16: Configuration

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snhippet reads a string from an HttpServietRequest and sets it as the
active catalog for a database Connection.

Java Example: Bad Code

conn.setCatalog(request.getParameter(“catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

Potential Mitigations
Compartmentalize your system and determine where the trust boundaries exist. Any input/control
outside the trust boundary should be treated as potentially hostile.
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.

In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of your attacker.

Relationships

Nature Type ID Name Page

ChildOf 2 Environment 699 1

ChildOf ® 20 Improper Input Validation 700 15

ChildOf [C] 610 Externally Controlled Reference to a Resource in Another 1000 688
Sphere

ChildOf [C] 642 External Control of Critical State Data 1000 718

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Setting Manipulation
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables
146 XML Schema Poisoning

CWE-16: Configuration

Description
Summary
Weaknesses in this category are typically introduced during the configuration of the software.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
MemberOf 635 Weaknesses Used by NVD 635 708

Taxonomy Mappings

13

uonemﬁuuo:) OT-9AMOD

CWE-17; Code

CWE Version 1.8.1
CWE-17: Code

Mapped Taxonomy Name Node ID Mapped Node Name
WASC 14 Server Misconfiguration
WASC 15 Application Misconfiguration

CWE-17: Code

Description
Summary
Weaknesses in this category are typically introduced during code development, including
specification, design, and implementation.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 18 Source Code 699 14
ParentOf 503 Byte/Object Code 699 606
ParentOf (C] 657 Violation of Secure Design Principles 699 738

CWE-18: Source Code

Description
Summary
Weaknesses in this category are typically found within source code.
Relationships

Nature Type ID Name Page
ChildOf 17 Code 699 14
ParentOf 19 Data Handling 699 14
ParentOf [C] 227 Failure to Fulfill API Contract ('API Abuse') 699 293
ParentOf 254 Security Features 699 319
ParentOf 361 Time and State 699 439
ParentOf 388 Error Handling 699 472
ParentOf [C] 398 Indicator of Poor Code Quality 699 484
ParentOf 417 Channel and Path Errors 699 510
ParentOf 429 Handler Errors 699 522
ParentOf 438 Behavioral Problems 699 532
ParentOf 442 Web Problems 699 535
ParentOf 445 User Interface Errors 699 537
ParentOf 452 Initialization and Cleanup Errors 699 542
ParentOf 465 Pointer Issues 699 555
ParentOf [C] 485 Insufficient Encapsulation 699 581

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Source Code

CWE-19: Data Handling

Description
Summary
Weaknesses in this category are typically found in functionality that processes data.
Relationships

CWE Version 1.8.1
CWE-20: Improper Input Validation

Nature Type ID Name Page
ChildOf 18 Source Code 699 14
ParentOf ® 20 Improper Input Validation 699 15
ParentOf [C] 116 Improper Encoding or Escaping of Output 699 153
ParentOf ® 118 Improper Access of Indexable Resource ('Range Error’) 699 160
ParentOf 133 String Errors 699 192
ParentOf 136 Type Errors 699 197
ParentOf 137 Representation Errors 699 197
ParentOf 189 Numeric Errors 699 250
ParentOf 199 Information Management Errors 699 268
ParentOf ® 228 Improper Handling of Syntactically Invalid Structure 699 294
ParentOf 461 Data Structure Issues 699 551
ParentOf (B] 471 Modification of Assumed-Immutable Data (MAID) 699 562
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
99 XML Parser Attack
100 Overflow Buffers

CWE-20: Improper Input Validation

Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.
Extended Description
When software fails to validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.
Terminology Notes
The "input validation” term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships.
Some people use "input validation" as a general term that covers many different techniques for
ensuring that input is appropriate, such as cleansing/filtering, canonicalization, and escaping.
Others use the term in a more narrow context to simply mean "checking if an input conforms to
expectations without changing it."
Time of Introduction
* Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Language-independent
Platform Notes
Modes of Introduction
If a programmer believes that an attacker cannot modify certain inputs, then the programmer
might not perform any input validation at all. For example, in web applications, many programmers
believe that cookies and hidden form fields can not be modified from a web browser (CWE-472),
although they can be altered using a proxy or a custom program. In a client-server architecture,
the programmer might assume that client-side security checks cannot be bypassed, even when a
custom client could be written that skips those checks (CWE-602).
Common Consequences

15

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 1.8.1
CWE-20: Improper Input Validation

Availability
An attacker could provide unexpected values and cause a program crash or excessive
consumption of resources, such as memory and CPU.
Confidentiality
An attacker could read confidential data if they are able to control resource references.
Integrity
An attacker could use malicious input to modify data or possibly alter control flow in unexpected
ways, including arbitrary command execution.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
Some instances of improper input validation can be detected using automated static analysis.
A static analysis tool might allow the user to specify which application-specific methods or
functions perform input validation; the tool might also have built-in knowledge of validation
frameworks such as Struts. The tool may then suppress or de-prioritize any associated warnings.
This allows the analyst to focus on areas of the software in which input validation does not appear
to be present.
Except in the cases described in the previous paragraph, automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.
Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.
Fuzzing
Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.
Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.
Java Example: Bad Code

CWE-20: Improper Input Validation

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

C Example: Bad Code

#define MAX_DIM 100
/* board dimensions */

int m,n, error;
board_square_t *board;

16

CWE Version 1.8.1
CWE-20: Improper Input Validation

printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){

die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
if (m>MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker\n");

}

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it fails to check for negative values supplied by the user. As a result, an attacker
can perform a resource consumption (CWE-400) attack against this program by specifying two,
large negative values that will not overflow, resulting in a very large memory allocation (CWE-789)
and possibly a system crash. Alternatively, an attacker can provide very large negative values
which will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on
how the values are treated in the remainder of the program.

Example 3:
The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.
PHP Example: Bad Code

$birthday = $_GET['birthday'];

$homepage = $_GET['homepage'];

echo "Birthday: $birthday
Homepage: click here"
The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Attack

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences in a failed protection mechanism of this nature. Depending on the context of the
code, CRLF Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77)
may also be possible.

Example 4:

This function attempts to extract a pair of numbers from a user-supplied string.

C Example: Bad Code

void parse_data(char *untrusted_input){
int m, n, error;
error = sscanf(untrusted_input, "%d:%d", &m, &n);
if (EOF == error){
die("Did not specify integer value. Die evil hacker'\n");
}

/* proceed assuming n and m are initialized correctly */

}

17

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.8.1

CWE-20: Improper Input Validation

This code attempts to extract two integer values out of a formatted, user-supplied input. However,
if an attacker were to provide an input of the form:

123:

Attack

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 5:
The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Java Example:

Bad Code

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");

}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-

negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0

and then try to store a new Widget in the first location, causing an exception to be thrown.
Observed Examples

Reference

CVE-2006-3790
CVE-2006-5462
CVE-2006-5525
CVE-2006-6658
CVE-2006-6870
CVE-2007-2442
CVE-2007-3409
CVE-2007-5893
CVE-2008-0600
CVE-2008-1284
CVE-2008-1303
CVE-2008-1440
CVE-2008-1625
CVE-2008-1737
CVE-2008-1738

CVE-2008-2223
CVE-2008-2252
CVE-2008-2309

CVE-2008-2374
CVE-2008-3174
CVE-2008-3177
CVE-2008-3464
CVE-2008-3477

CVE-2008-3494
CVE-2008-3571
CVE-2008-3660
CVE-2008-3680
CVE-2008-3812
CVE-2008-3843
CVE-2008-4114
CVE-2008-5285

Description

size field that is inconsistent with packet size leads to buffer over-read

use of extra data in a signature allows certificate signature forging

incomplete blacklist allows SQL injection

request with missing parameters leads to information leak

infinite loop from DNS packet with a label that points to itself

zero-length input causes free of uninitialized pointer

infinite loop from DNS packet with a label that points to itself

HTTP request with missing protocol version number leads to crash

kernel does not validate an incoming pointer before dereferencing it

NUL byte in theme name cause directory traversal impact to be worse

missing parameter leads to crash

lack of validation of length field leads to infinite loop

lack of validation of input to an IOCTL allows code execution

anti-virus product allows DoS via zero-length field

anti-virus product has insufficient input validation of hooked SSDT functions, allowing code
execution

SQL injection through an ID that was supposed to be numeric.

kernel does not validate parameters sent in from userland, allowing code execution
product uses a blacklist to identify potentially dangerous content, allowing attacker to
bypass a warning

lack of validation of string length fields allows memory consumption or buffer over-read
driver in security product allows code execution due to insufficient validation
zero-length attachment causes crash

driver does not validate input from userland to the kernel

lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,
array index errors, and memory corruption.

security bypass via an extra header

empty packet triggers reboot

crash via multiple "." characters in file extension

packet with invalid version number leads to NULL pointer dereference
router crashes with a malformed packet

insufficient validation enables XSS

system crash with offset value that is inconsistent with packet size
infinite loop from a long SMTP request

18

CWE Version 1.8.1
CWE-20: Improper Input Validation

Reference Description
CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens and numbers.
CVE-2008-5563 crash via a malformed frame structure

Potential Mitigations
Architecture and Design
Input Validation
Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design

Implementation

Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, databases, and any
external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

uoneplieA 1nduj Jadoidwy :0z-3MD

19

CWE Version 1.8.1
CWE-20: Improper Input Validation

Implementation
Be especially careful to validate your input when you invoke code that crosses language
boundaries, such as from an interpreted language to native code. This could create an
unexpected interaction between the language boundaries. Ensure that you are not violating any
of the expectations of the language with which you are interfacing. For example, even though
Java may not be susceptible to buffer overflows, providing a large argument in a call to native
code might trigger an overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships

CWE-20: Improper Input Validation

Nature Type ID Name Page
ChildOf 19 Data Handling 699 14
CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 1000 24
('Path Traversal')
CanPrecede @ 41 Improper Resolution of Path Equivalence 1000 51
CanPrecede @ 74 Failure to Sanitize Data into a Different Plane ('Injection’) 1000 79
ChildOf [C] 693 Protection Mechanism Failure 1000 783
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 820
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 833
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management 734 835
MEM
ChildOf 746 (CERT)C Secure Coding Section 12 - Error Handling (ERR) 734 838
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 838
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 842
ParentOf (B) 15 External Control of System or Configuration Setting 700 12
ParentOf 21 Pathname Traversal and Equivalence Errors 699 23
ParentOf [C] 73 External Control of File Name or Path 699 75
700

20

CWE Version 1.8.1
CWE-20: Improper Input Validation

Nature
ParentOf

ParentOf

ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf
ParentOf

ParentOf

ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf

ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

MemberOf
ParentOf
ParentOf
ParentOf
MemberOf

Type

@ @ @

0606 666 COCCCOCRRO

@

!888! GCGO @6 & 0OOEEe ©@ © @O

ID
77

79

89

99

100
102
103
104
105

106
107
108

109
110
111

112

113

114

117
119

120

129

134
170
190
466
470

554

601
606

621
622
626

635
680
690
692
700

Name

Improper Sanitization of Special Elements used in a
Command ('Command Injection’)

Failure to Preserve Web Page Structure (‘Cross-site
Scripting’)

Improper Sanitization of Special Elements used in an SQL
Command ('SQL Injection’)

Improper Control of Resource Identifiers (‘Resource Injection’)
Technology-Specific Input Validation Problems

Struts: Duplicate Validation Forms

Struts: Incomplete validate() Method Definition

Struts: Form Bean Does Not Extend Validation Class
Struts: Form Field Without Validator

Struts: Plug-in Framework not in Use
Struts: Unused Validation Form
Struts: Unvalidated Action Form

Struts: Validator Turned Off
Struts: Validator Without Form Field
Direct Use of Unsafe JNI

Missing XML Validation

Failure to Sanitize CRLF Sequences in HTTP Headers
(HTTP Response Splitting’)
Process Control

Improper Output Sanitization for Logs

Failure to Constrain Operations within the Bounds of a
Memory Buffer

Buffer Copy without Checking Size of Input (‘'Classic Buffer
Overflow")

Improper Validation of Array Index

Uncontrolled Format String

Improper Null Termination

Integer Overflow or Wraparound

Return of Pointer Value Outside of Expected Range

Use of Externally-Controlled Input to Select Classes or Code
(‘Unsafe Reflection’)

ASP.NET Misconfiguration: Not Using Input Validation
Framework

URL Redirection to Untrusted Site ('Open Redirect’)

Unchecked Input for Loop Condition

Variable Extraction Error
Unvalidated Function Hook Arguments
Null Byte Interaction Error (Poison Null Byte)

Weaknesses Used by NVD

Integer Overflow to Buffer Overflow

Unchecked Return Value to NULL Pointer Dereference
Incomplete Blacklist to Cross-Site Scripting

Seven Pernicious Kingdoms

700

700
700

700
699
700
700
700
700
1000
700
700
700
1000
700
700
699
700
699
700
1000
700

699
700
1000
700
699
700
700

699
1000
700
700
700
700
699
700
699
1000
699
699
1000
699
699
699
1000
635
1000
1000
1000
700

Page
82

92
111

134
135
136
137
138
139

140
141
141

142
143
145

146

147

150

158
160

166
181

192
226
250
555
560

637

677
685

697
698
701

708
770
780
783
789

21

uonepleA induj Jadoidwy :0z-3MD

CWE Version 1.8.1
CWE-20: Improper Input Validation

Nature Type ID Name Page
ParentOf (V] 781 Improper Address Validation in IOCTL with 699 881
METHOD_NEITHER I/O Control Code 1000
ParentOf (V] 785 Use of Path Manipulation Function without Maximum-sized 699 887
Buffer 700
ParentOf (V] 789 Uncontrolled Memory Allocation 1000 889

Relationship Notes
CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the """ apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
There is not much research into the classification of input validation techniques and their
application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input
validation" without providing more specific details that might contribute to a deeper understanding
of validation techniques and the weaknesses they can prevent or reduce. Validation is over-
emphasized in contrast to other sanitization techniques such as cleansing and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings

CWE-20: Improper Input Validation

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Input validation and representation

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

CERT C Secure Coding ERRO7-C Prefer functions that support error checking
over equivalent functions that don't

CERT C Secure Coding INTO6-C Use strtol() or a related function to convert
a string token to an integer

CERT C Secure Coding MEM10-C Define and use a pointer validation function

CERT C Secure Coding MSCO08-C Library functions should validate their
parameters

WASC 20 Improper Input Handling

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

18 Embedding Scripts in Nonscript Elements

22 Exploiting Trust in Client (aka Make the Client Invisible)

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies

32 Embedding Scripts in HTTP Query Strings

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

22

CWE Version 1.8.1
CWE-21: Pathname Traversal and Equivalence Errors

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
47 Buffer Overflow via Parameter Expansion
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
63 Simple Script Injection
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
73 User-Controlled Filename
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
81 Web Logs Tampering
83 XPath Injection
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
88 OS Command Injection
91 XSS in IMG Tags
99 XML Parser Attack
101 Server Side Include (SSI) Injection
104 Cross Zone Scripting
106 Cross Site Scripting through Log Files
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
171 Variable Manipulation
References

Jim Manico. "Input Validation with ESAPI - Very Important". 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.
"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 10, "All Input Is Evil'" Page
341. 2nd Edition. Microsoft. 2002.

Maintenance Notes
Input validation - whether missing or incorrect - is such an essential and widespread part of secure
development that it is implicit in many different weaknesses. Traditionally, problems such as
buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism available
for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun
capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more
work is needed.

CWE-21: Pathname Traversal and Equivalence Errors

Category ID: 21 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).

23

S10443 92uajeAlnbg pue [esianel] sweuyred TZ-IMD

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 1.8.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page

ChildOf [C] 20 Improper Input Validation 699 15

ParentOf (C] 22 Improper Limitation of a Pathname to a Restricted Directory 699 24
('Path Traversal')

ParentOf (B] 41 Improper Resolution of Path Equivalence 699 51

ParentOf (B] 59 Improper Link Resolution Before File Access ('Link Following') 699 63

ParentOf (B] 66 Improper Handling of File Names that Identify Virtual 699 69
Resources

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Pathname Traversal and Equivalence Errors
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic

CWE-22: Improper Limitation of a Pathname to a Restricted
Directory (‘Path Traversal')

Weakness ID: 22 (Weakness Class) Status: Draft

Description
Summary
The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not
properly sanitize special elements that can resolve to a location that is outside of the restricted
directory.
Extended Description
Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin", which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.
In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
"txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.
Alternate Terms

24

CWE Version 1.8.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal," but both terms are attack-focused.
Terminology Notes
Like other weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying weaknesses. Some people use "directory traversal” only to refer to the injection of
".." and equivalent sequences whose specific meaning is to traverse directories.
Other variants like "absolute pathname™ and "drive letter" have the *effect* of directory traversal,
but some people may not call it such, since it doesn't involve ".." or equivalent.
Time of Introduction
 Architecture and Design
e Implementation
Applicable Platforms
Languages
» Language-independent
Common Consequences
Integrity
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.
Integrity
Read / write files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.
Confidentiality
Read / write files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.
Availability
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.
Likelihood of Exploit
High to Very High
Detection Methods
Automated Static Analysis
High
Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to filter path-traversal problems that are only exploitable by
the software's administrator - or other privileged users - and thus potentially valid behavior or, at
worst, a bug instead of a vulnerability.
Manual Static Analysis
High
Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.
Demonstrative Examples
Example 1:

25

(,res1anel] yred,) A1019811Q pa1dli1say e 0]

aweuyred e jo uonenwi sadoidwi :zz-IMD

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 1.8.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Perl Example: Bad Code

my $dataPath = "/users/cwe/profiles";

my $username = param("user");

my $profilePath = $dataPath . "/" . Susername;

open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");

print "\n";

while (<$fh>) {

print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Attack

.[I..l..letc/passwd

The program would generate a profile pathname like this:

Result
lusers/cwel/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

Result
/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack

of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 2:

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.

Java Example: Bad Code

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not sanitized before creating the File object. This allows anyone who can
control the system property to determine what file is used. Ideally, the path should be resolved
relative to some kind of application or user home directory.
Example 3:
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code
my $Username = GetUntrustedInput();
$Username =~ sN\.\.V/J/;

my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:
Attack

.I..I..letc/passwd

26

CWE Version 1.8.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

will have the first "../" stripped, resulting in:

Result

.I..Ietc/passwd

This value is then concatenated with the /home/user/ directory:

Result

/homeluser/../..letc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against a white list and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Java Example: Bad Code

String path = getinputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()
}

An attacker could provide an input such as this:

[/safe_dir/../important.dat
The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory
Example 5:
The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.
HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">

Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonenwit sadoidw) :gz-aMD

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();

27

CWE Version 1.8.1

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf(*\""));

I/ output the file to the local upload directory

try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();

bw.flush();

}
} /lend of for loop

bw.close();

} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page

else

{1}

}

Reference
CVE-2008-5748

CVE-2009-0244
CVE-2009-4013

CVE-2009-4053
CVE-2009-4194
CVE-2009-4449
CVE-2009-4581

CVE-2010-0012
CVE-2010-0013
CVE-2010-0467

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

This code does not check the filename that is provided in the header, so an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.
Also, this code does not perform a check on the type of the file being uploaded. This could allow
an attacker to upload any executable file or other file with malicious code (CWE-434).

Observed Examples

Description

Chain: external control of values for user's desired language and theme enables path
traversal.

OBEX FTP service for a Bluetooth device allows listing of directories, and creation or
reading of files using ".." sequences..

Software package maintenance program allows overwriting arbitrary files using "../"
sequences.

FTP server allows creation of arbitrary directories using ".." in the MKD command.
FTP server allows deletion of arbitrary files using ".." in the DELE command.

Bulletin board allows attackers to determine the existence of files using the avatar.
PHP program allows arbitrary code execution using ".." in filenames that are fed to the
include() function.

Overwrite of files using a .. in a Torrent file.

Chat program allows overwriting files using a custom smiley request.

Newsletter module allows reading arbitrary files using "../" sequences.

Potential Mitigations

28

CWE Version 1.8.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.
Warning: if you attempt to cleanse your data, then do so that the end result is not in the form
that can be dangerous. A sanitizing mechanism can remove characters such as '." and ;' which
may be required for some exploits. An attacker can try to fool the sanitizing mechanism into
"cleaning” data into a dangerous form. Suppose the attacker injects a '." inside a filename (e.g.
"sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid
filename, "sensitiveFile". If the input data are now assumed to be safe, then the file may be
compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that your application does not decode the same
input twice. Such errors could be used to bypass whitelist schemes by introducing dangerous
inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:
realpath() in C
getCanonicalPath() in Java
GetFullPath() in ASP.NET
realpath() or abs_path() in Perl
realpath() in PHP
Implementation
Environment Hardening
Run your code using the least privileges possible. If possible, create isolated accounts with limited
privileges that are only used for a single task. That way, a successful attack will not immediately
give the attacker access to the rest of the software or its environment. For example, database
applications rarely need to run as the database administrator, especially in day-to-day operations.
Architecture and Design
When the set of filenames is limited or known, create a mapping from a set of fixed input
values (such as numeric IDs) to the actual filenames, and reject all other inputs. For example,
ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

(,res1anel] yred,) A1019811Q pa1dli1say e 0]

29

aweuyred e jo uonenwi sadoidwi :zz-IMD

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 1.8.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Architecture and Design
Operation
Environment Hardening
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
Other Notes
Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable.
Any combination of the items below can provide its own variant, e.g. "//../" is not listed
(CVE-2004-0325).
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 23
ChildOf 632 Weaknesses that Affect Files or Directories 631 706
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 753
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 811
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object 629 817
Reference
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 821
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 836
ChildOf 802 2010 Top 25 - Risky Resource Management 800 903
CanFollow [C] 20 Improper Input Validation 1000 15
ParentOf (B) 23 Relative Path Traversal 699 31
1000
ParentOf (B) 36 Absolute Path Traversal 699 47
1000
CanFollow ® 73 External Control of File Name or Path 1000 75
CanFollow [C] 172 Encoding Error 1000 231
MemberOf 635 Weaknesses Used by NVD 635 708

Relationship Notes
Pathname equivalence can be regarded as a type of canonicalization error.
Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Research Gaps
Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Affected Resources
 File/Directory

Relevant Properties
» Equivalence

30

CWE Version 1.8.1
CWE-23: Relative Path Traversal

Functional Areas

 File processing
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Traversal
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding F1002-C Canonicalize path names originating from
untrusted sources
WASC 33 Path Traversal
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
23 File System Function Injection, Content Based
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
139 Relative Path Traversal
References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Directory Traversal and
Using Parent Paths (..)" Page 370. 2nd Edition. Microsoft. 2002.

[REF-17] OWASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/index.php/
Testing_for_Path_Traversal_(OWASP-AZ-001) >.

CWE-23: Relative Path Traversal

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize sequences such as ".." that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
¢ Implementation

Applicable Platforms

Languages
o All
Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:
Bad Code
http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html
A simple way to execute this attack is like this:
Attack

http://example.com.br/get-files?file=../../../../somedir/somefile

31

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 1.8.1
CWE-23: Relative Path Traversal

http://example.com.br/../../..I..letc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.

HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" hame="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServietResponse response) throws ServletException,
IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\'""));

I/ output the file to the local upload directory

try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));

for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page
else
{1}

}

}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary

32

CWE Version 1.8.1
CWE-23: Relative Path Traversal

files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (C] 22 Improper Limitation of a Pathname to a Restricted Directory 699 24
('Path Traversal') 1000
ParentOf (V] 24 Path Traversal: "../filedir' 699 34
1000
ParentOf (V] 25 Path Traversal: '/../filedir' 699 35
1000
ParentOf (V] 26 Path Traversal: '/dir/../filename' 699 35
1000
ParentOf (V) 27 Path Traversal: 'dir/../../flename' 699 36
1000
ParentOf (V) 28 Path Traversal: '..\filedir' 699 37
1000
ParentOf (V) 29 Path Traversal: '\..\filename' 699 39
1000
ParentOf (V) 30 Path Traversal: "\dir\..\filename' 699 40
1000
ParentOf (V) 31 Path Traversal: 'dir\..\..\filename' 699 41
1000
ParentOf (V] 32 Path Traversal: '..." (Triple Dot) 699 42
1000
ParentOf (V] 33 Path Traversal:" (Multiple Dot) 699 43
1000
ParentOf (V] 34 Path Traversal: '..../I" 699 44
1000
ParentOf 9 35 Path Traversal: '...[.../I' 699 45
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Relative Path Traversal

33

[esianel] yred aAleay :€z-3MD

" [filedir’

CWE-24: Path Traversal:

CWE Version 1.8.1
CWE-24: Path Traversal: "../filedir'

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls

References

OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.

CWE-24: Path Traversal: '../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/* is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 31
1000

34

CWE Version 1.8.1
CWE-25: Path Traversal: '/../filedir'

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER " [filedir

CWE-25: Path Traversal: '/../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a " inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 31
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /. [filedir

CWE-26: Path Traversal: '/dir/../filename'

35

.Jesianel] yred :GZ-ImMD

AIPB/,

'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 1.8.1
CWE-27: Path Traversal: 'dir/../../filename'

Weakness ID: 26 (Weakness Variant) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/dir/../filename” sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '/dir/../filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Technology Classes
* Web-Server (Often)
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a " inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 31
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘[directory/../filename

CWE-27: Path Traversal: 'dir/../..[fillename'

Weakness ID: 27 (Weakness Variant)

Description

36

CWE Version 1.8.1
CWE-28: Path Traversal: "..\filedir'

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize multiple internal “../" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The ‘'directory/../../[filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0298

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFS) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 31
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 'directory/../../filename

CWE-28: Path Traversal: . \filedir'

Description

37

.Jlesianel] yred :82-IMD

ARSI,

Xfiledir!

CWE-28: Path Traversal:

CWE Version 1.8.1
CWE-28: Path Traversal: "..\filedir'

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "..\" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/* separator is valid.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Operating Systems
¢ Windows
Observed Examples
Reference Description

CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.

CVE-2002-1042

CVE-2002-1178

CVE-2002-1209

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as " and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 31
1000

Taxonomy Mappings

38

CWE Version 1.8.1
CWE-29: Path Traversal: '\..\flename'

Mapped Taxonomy Name Mapped Node Name
PLOVER ".\filename' (‘"dot dot backslash')

CWE-29: Path Traversal: '\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize ‘\..\filename" (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Operating Systems
e Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.
CVE-2005-2142

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers